Loading…

Estimation of Soybean Evapotranspiration Using SSEBop Model with High-Resolution Imagery from an Unmanned Aerial Vehicle

Abstract Evapotranspiration (ET) is one of the most important processes in the hydrologic cycle, constituting the main responsible for water losses at the surface. Several evapotranspiration models use information from surface temperature and vegetation indices captured by remote sensors such as MOD...

Full description

Saved in:
Bibliographic Details
Published in:Revista Brasileira de Meteorologia 2024, Vol.39
Main Authors: Casari, Raphael Augusto das Chagas Noqueli, Neumann, Marina Bilich, Ribeiro Junior, Walter Quadros, Olivetti, Diogo, Tavares, Cássio Jardim, Pereira, Lucas Felisberto, Ramos, Maria Lucrécia Gerosa, Pereira, André Ferreira, Silva Neto, Sebastião Pedro da, Roig, Henrique Llacer
Format: Article
Language:eng ; por
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Evapotranspiration (ET) is one of the most important processes in the hydrologic cycle, constituting the main responsible for water losses at the surface. Several evapotranspiration models use information from surface temperature and vegetation indices captured by remote sensors such as MODIS and LANDSAT to estimate the ETc value. The objective of this study is to apply SSEBop model to estimate ETc of soybean in a field experiment under four water regimes, using high-resolution multispectral and thermal images collected from remotely piloted aircraft (RPA). Surface temperature and NDVI maps were generated as sources for evapotranspiration estimation. From a Python script, spatial variability maps of ETc were generated at different phenological stages of the crop. The quality of the model for ETc estimates was performed by comparing the modeling results with leaf transpiration data measured in the field using an infrared gas analyzer, whose results showed a good correlation (R2 = 0.76). These results demonstrated the possibility of transferring a model originally developed for processing low to medium-resolution satellite images to high-resolution spatial-temporal images acquired by RPA with small adaptations in the original algorithm, generating great potential for new studies on an experimental and field scale. Resumo A evapotranspiração (ET) é um dos mais importantes processos do ciclo hidrológico, constituindo-se o principal responsável pelas perdas de água na superfície. Vários modelos de evapotranspiração utilizam informações da temperatura da superfície e índices de vegetação captadas por sensores remotos tais como o MODIS e a série LANDSAT para estimar o valor de ETc. O objetivo deste estudo aplicar o modelo SSEBop para estimativa da ETc da soja (Glicine max. L) em um campo experimental submetida a quatro regimes hídricos, utilizando imagens multiespectrais e termais de alta resolução coletadas com uso de aeronave remotamente pilotada. Mapas de temperatura da superfície e NDVI foram gerados como fontes para a estimativa da evapotranspiração. A partir de um script em Python, mapas de variabilidade espacial da ETc foram gerados para diferentes estádios fenológicos da cultura. A qualidade do modelo de estimativas de ETc foi realizada comparando-se os resultados da modelagem com os dados transpiração foliar medida no campo através de um analisador de gases por infravermelho, cujos resultados mostraram boa correlação (R2 = 0,76). Estes resultado
ISSN:0102-7786
1982-4351
DOI:10.1590/0102-77863910007