Loading…
Cytotoxic Potential of Rare Plant Salvia candidissima subsp. candidissima on Breast Cancer Cells
Abstract Breast cancer is the leading cause of cancer-related deaths in women throughout the world. Research on natural anti-cancer products from plants has gained traction. Salvia L. species and their derivatives are rare in Turkey and have suggested for their potential anti-cancer effects. The aim...
Saved in:
Published in: | Brazilian Archives of Biology and Technology 2023-01, Vol.66 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Breast cancer is the leading cause of cancer-related deaths in women throughout the world. Research on natural anti-cancer products from plants has gained traction. Salvia L. species and their derivatives are rare in Turkey and have suggested for their potential anti-cancer effects. The aim of this study is to assess the potential cytotoxic/apoptotic activities of methanol extract of Salvia candidissima Vahl. subsp. candidissima (SCE) on MCF-7 and MDA-MB-231 breast cancer cells. A GCxGC-TOF/MS system and a dual stage commercial thermal desorption injector were used to determine the chemical components of SCE. MTT and ATP viability tests were used to investigate the anti-growth activity. The apoptosis-inducing effect was assessed using a fluorescence staining method. Caspase-cleaved keratin 18 (ccK18, M30-antigen) levels measured by M30-CytoDeath ELISA Kit. The results showed that SCE suppressed the survival of the MCF-7 and MDA-MB-231 breast cancer cells in a dose-dependent manner, based on the findings of both MTT and ATP cell viability tests and pyknotic cell nuclei were observed via fluorescent staining in both cell lines after 48 h of treatment. The treatment group had greater levels of caspase-cleaved keratin 18 in the MCF-7 cells than the untreated group. These results showed that SCE triggers apoptosis, causes cell death in MCF-7 and MDA-MB-231 cell lines. SCE may become promising therapeutic strategy in the treatment of breast cancer with further in vitro and in vivo studies. |
---|---|
ISSN: | 1516-8913 1678-4324 |
DOI: | 10.1590/1678-4324-2023220358 |