Loading…
Sample Complexity and Performance Bounds for Non-Parametric Approximate Linear Programming
One of the most difficult tasks in value function approximation for Markov Decision Processes is finding an approximation architecture that is expressive enough to capture the important structure in the value function, while at the same time not overfitting the training samples. Recent results in no...
Saved in:
Published in: | Proceedings of the ... AAAI Conference on Artificial Intelligence 2013-06, Vol.27 (1), p.782-788 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 788 |
container_issue | 1 |
container_start_page | 782 |
container_title | Proceedings of the ... AAAI Conference on Artificial Intelligence |
container_volume | 27 |
creator | Pazis, Jason Parr, Ronald |
description | One of the most difficult tasks in value function approximation for Markov Decision Processes is finding an approximation architecture that is expressive enough to capture the important structure in the value function, while at the same time not overfitting the training samples. Recent results in non-parametric approximate linear programming (NP-ALP), have demonstrated that this can be done effectively using nothing more than a smoothness assumption on the value function. In this paper we extend these results to the case where samples come from real world transitions instead of the full Bellman equation, adding robustness to noise. In addition, we provide the first max-norm, finite sample performance guarantees for any form of ALP. NP-ALP is amenable to problems with large (multidimensional) or even infinite (continuous) action spaces, and does not require a model to select actions using the resulting approximate solution. |
doi_str_mv | 10.1609/aaai.v27i1.8696 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1609_aaai_v27i1_8696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1609_aaai_v27i1_8696</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1609_aaai_v27i1_86963</originalsourceid><addsrcrecordid>eNqVj81qwzAQhEVJoSHNudd9ATtW_KtjYhp6CMXQnnoRiy0bFUsyK7ckb1859AUyl5lhmMPH2AtPYl4kYoeIOv7dl5rHVSGKB7bep2UWpVlRrULmuYjyVIgntvX-OwnKBOe8XLOvDzTTqKB2i130fAW0HTSKekcGbavg6H5s5yF0eHc2apDQqJl0C4dpInfRBmcFZ20VEjTkhrAbbYdn9tjj6NX23zdsd3r9rN-ilpz3pHo5UfjSVfJELhRyoZA3CrlQpPc__gDrG1Ll</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sample Complexity and Performance Bounds for Non-Parametric Approximate Linear Programming</title><source>Freely Accessible Science Journals</source><creator>Pazis, Jason ; Parr, Ronald</creator><creatorcontrib>Pazis, Jason ; Parr, Ronald</creatorcontrib><description>One of the most difficult tasks in value function approximation for Markov Decision Processes is finding an approximation architecture that is expressive enough to capture the important structure in the value function, while at the same time not overfitting the training samples. Recent results in non-parametric approximate linear programming (NP-ALP), have demonstrated that this can be done effectively using nothing more than a smoothness assumption on the value function. In this paper we extend these results to the case where samples come from real world transitions instead of the full Bellman equation, adding robustness to noise. In addition, we provide the first max-norm, finite sample performance guarantees for any form of ALP. NP-ALP is amenable to problems with large (multidimensional) or even infinite (continuous) action spaces, and does not require a model to select actions using the resulting approximate solution.</description><identifier>ISSN: 2159-5399</identifier><identifier>EISSN: 2374-3468</identifier><identifier>DOI: 10.1609/aaai.v27i1.8696</identifier><language>eng</language><ispartof>Proceedings of the ... AAAI Conference on Artificial Intelligence, 2013-06, Vol.27 (1), p.782-788</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pazis, Jason</creatorcontrib><creatorcontrib>Parr, Ronald</creatorcontrib><title>Sample Complexity and Performance Bounds for Non-Parametric Approximate Linear Programming</title><title>Proceedings of the ... AAAI Conference on Artificial Intelligence</title><description>One of the most difficult tasks in value function approximation for Markov Decision Processes is finding an approximation architecture that is expressive enough to capture the important structure in the value function, while at the same time not overfitting the training samples. Recent results in non-parametric approximate linear programming (NP-ALP), have demonstrated that this can be done effectively using nothing more than a smoothness assumption on the value function. In this paper we extend these results to the case where samples come from real world transitions instead of the full Bellman equation, adding robustness to noise. In addition, we provide the first max-norm, finite sample performance guarantees for any form of ALP. NP-ALP is amenable to problems with large (multidimensional) or even infinite (continuous) action spaces, and does not require a model to select actions using the resulting approximate solution.</description><issn>2159-5399</issn><issn>2374-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVj81qwzAQhEVJoSHNudd9ATtW_KtjYhp6CMXQnnoRiy0bFUsyK7ckb1859AUyl5lhmMPH2AtPYl4kYoeIOv7dl5rHVSGKB7bep2UWpVlRrULmuYjyVIgntvX-OwnKBOe8XLOvDzTTqKB2i130fAW0HTSKekcGbavg6H5s5yF0eHc2apDQqJl0C4dpInfRBmcFZ20VEjTkhrAbbYdn9tjj6NX23zdsd3r9rN-ilpz3pHo5UfjSVfJELhRyoZA3CrlQpPc__gDrG1Ll</recordid><startdate>20130630</startdate><enddate>20130630</enddate><creator>Pazis, Jason</creator><creator>Parr, Ronald</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130630</creationdate><title>Sample Complexity and Performance Bounds for Non-Parametric Approximate Linear Programming</title><author>Pazis, Jason ; Parr, Ronald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1609_aaai_v27i1_86963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Pazis, Jason</creatorcontrib><creatorcontrib>Parr, Ronald</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the ... AAAI Conference on Artificial Intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pazis, Jason</au><au>Parr, Ronald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample Complexity and Performance Bounds for Non-Parametric Approximate Linear Programming</atitle><jtitle>Proceedings of the ... AAAI Conference on Artificial Intelligence</jtitle><date>2013-06-30</date><risdate>2013</risdate><volume>27</volume><issue>1</issue><spage>782</spage><epage>788</epage><pages>782-788</pages><issn>2159-5399</issn><eissn>2374-3468</eissn><abstract>One of the most difficult tasks in value function approximation for Markov Decision Processes is finding an approximation architecture that is expressive enough to capture the important structure in the value function, while at the same time not overfitting the training samples. Recent results in non-parametric approximate linear programming (NP-ALP), have demonstrated that this can be done effectively using nothing more than a smoothness assumption on the value function. In this paper we extend these results to the case where samples come from real world transitions instead of the full Bellman equation, adding robustness to noise. In addition, we provide the first max-norm, finite sample performance guarantees for any form of ALP. NP-ALP is amenable to problems with large (multidimensional) or even infinite (continuous) action spaces, and does not require a model to select actions using the resulting approximate solution.</abstract><doi>10.1609/aaai.v27i1.8696</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2159-5399 |
ispartof | Proceedings of the ... AAAI Conference on Artificial Intelligence, 2013-06, Vol.27 (1), p.782-788 |
issn | 2159-5399 2374-3468 |
language | eng |
recordid | cdi_crossref_primary_10_1609_aaai_v27i1_8696 |
source | Freely Accessible Science Journals |
title | Sample Complexity and Performance Bounds for Non-Parametric Approximate Linear Programming |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A13%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample%20Complexity%20and%20Performance%20Bounds%20for%20Non-Parametric%20Approximate%20Linear%20Programming&rft.jtitle=Proceedings%20of%20the%20...%20AAAI%20Conference%20on%20Artificial%20Intelligence&rft.au=Pazis,%20Jason&rft.date=2013-06-30&rft.volume=27&rft.issue=1&rft.spage=782&rft.epage=788&rft.pages=782-788&rft.issn=2159-5399&rft.eissn=2374-3468&rft_id=info:doi/10.1609/aaai.v27i1.8696&rft_dat=%3Ccrossref%3E10_1609_aaai_v27i1_8696%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-crossref_primary_10_1609_aaai_v27i1_86963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |