Loading…

Telepath: Understanding Users from a Human Vision Perspective in Large-Scale Recommender Systems

Designing an e-commerce recommender system that serves hundreds of millions of active users is a daunting challenge. To our best knowledge, the complex brain activity mechanism behind human shopping activities is never considered in existing recommender systems. From a human vision perspective, we f...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Yu, Xu, Jixing, Wu, Aohan, Li, Mantian, He, Yang, Hu, Jinghe, Yan, Weipeng
Format: Conference Proceeding
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Designing an e-commerce recommender system that serves hundreds of millions of active users is a daunting challenge. To our best knowledge, the complex brain activity mechanism behind human shopping activities is never considered in existing recommender systems. From a human vision perspective, we found two key factors that affect users’ behaviors: items’ attractiveness and their matching degrees with users’ interests. This paper proposes Telepath, a vision-based bionic recommender system model, which simulates human brain activities in decision making of shopping, thus understanding users from such perspective. The core of Telepath is a complex deep neural network with multiple subnetworks. In practice, the Telepath model has been launched to JD’s recommender system and advertising system and outperformed the former state-of-the-art method. For one of the major item recommendation blocks on the JD app, click-through rate (CTR), gross merchandise value (GMV) and orders have been increased 1.59%, 8.16% and 8.71% respectively by Telepath. For several major ad publishers of JD demand-side platform, CTR, GMV and return on investment have been increased 6.58%, 61.72% and 65.57% respectively by the first launch of Telepath, and further increased 2.95%, 41.75% and 41.37% respectively by the second launch.
ISSN:2159-5399
2374-3468
DOI:10.1609/aaai.v32i1.11243