Loading…
Multi-Matching Network for Multiple Choice Reading Comprehension
Multiple-choice machine reading comprehension is an important and challenging task where the machine is required to select the correct answer from a set of candidate answers given passage and question. Existing approaches either match extracted evidence with candidate answers shallowly or model pass...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c181t-3646f0f9a2f17cc08b8a44612c2b444db80b8dfdd01c3ee11d85e7167cbed1993 |
---|---|
cites | |
container_end_page | 7095 |
container_issue | 1 |
container_start_page | 7088 |
container_title | |
container_volume | 33 |
creator | Tang, Min Cai, Jiaran Zhuo, Hankz Hankui |
description | Multiple-choice machine reading comprehension is an important and challenging task where the machine is required to select the correct answer from a set of candidate answers given passage and question. Existing approaches either match extracted evidence with candidate answers shallowly or model passage, question and candidate answers with a single paradigm of matching. In this paper, we propose Multi-Matching Network (MMN) which models the semantic relationship among passage, question and candidate answers from multiple different paradigms of matching. In our MMN model, each paradigm is inspired by how human think and designed under a unified compose-match framework. To demonstrate the effectiveness of our model, we evaluate MMN on a large-scale multiple choice machine reading comprehension dataset (i.e. RACE). Empirical results show that our proposed model achieves a significant improvement compared to strong baselines and obtains state-of-the-art results. |
doi_str_mv | 10.1609/aaai.v33i01.33017088 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1609_aaai_v33i01_33017088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1609_aaai_v33i01_33017088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-3646f0f9a2f17cc08b8a44612c2b444db80b8dfdd01c3ee11d85e7167cbed1993</originalsourceid><addsrcrecordid>eNo1kNtKxDAYhIMouKz7Bl70BVLzN2kOd0rxBLsKotchzcFGu9uSVMW3d-vq3MzADHPxIXQOpARO1IUxJpaflEYCJaUEBJHyCC0qKhimjMvjfYZa4ZoqdYpWOb-RvZgCALFAl5uPfop4Yybbxd1r8eCnryG9F2FIxW819r5ouiFaXzx54-ZNM2zH5Du_y3HYnaGTYPrsV3--RC8318_NHV4_3t43V2tsQcKEKWc8kKBMFUBYS2QrDWMcKlu1jDHXStJKF5wjYKn3AE7WXgAXtvUOlKJLxA6_Ng05Jx_0mOLWpG8NRM8g9AxCH0DofxD0B_mKUvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-Matching Network for Multiple Choice Reading Comprehension</title><source>Freely Accessible Journals</source><creator>Tang, Min ; Cai, Jiaran ; Zhuo, Hankz Hankui</creator><creatorcontrib>Tang, Min ; Cai, Jiaran ; Zhuo, Hankz Hankui</creatorcontrib><description>Multiple-choice machine reading comprehension is an important and challenging task where the machine is required to select the correct answer from a set of candidate answers given passage and question. Existing approaches either match extracted evidence with candidate answers shallowly or model passage, question and candidate answers with a single paradigm of matching. In this paper, we propose Multi-Matching Network (MMN) which models the semantic relationship among passage, question and candidate answers from multiple different paradigms of matching. In our MMN model, each paradigm is inspired by how human think and designed under a unified compose-match framework. To demonstrate the effectiveness of our model, we evaluate MMN on a large-scale multiple choice machine reading comprehension dataset (i.e. RACE). Empirical results show that our proposed model achieves a significant improvement compared to strong baselines and obtains state-of-the-art results.</description><identifier>ISSN: 2159-5399</identifier><identifier>EISSN: 2374-3468</identifier><identifier>DOI: 10.1609/aaai.v33i01.33017088</identifier><language>eng</language><ispartof>Proceedings of the ... AAAI Conference on Artificial Intelligence, 2019, Vol.33 (1), p.7088-7095</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c181t-3646f0f9a2f17cc08b8a44612c2b444db80b8dfdd01c3ee11d85e7167cbed1993</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tang, Min</creatorcontrib><creatorcontrib>Cai, Jiaran</creatorcontrib><creatorcontrib>Zhuo, Hankz Hankui</creatorcontrib><title>Multi-Matching Network for Multiple Choice Reading Comprehension</title><title>Proceedings of the ... AAAI Conference on Artificial Intelligence</title><description>Multiple-choice machine reading comprehension is an important and challenging task where the machine is required to select the correct answer from a set of candidate answers given passage and question. Existing approaches either match extracted evidence with candidate answers shallowly or model passage, question and candidate answers with a single paradigm of matching. In this paper, we propose Multi-Matching Network (MMN) which models the semantic relationship among passage, question and candidate answers from multiple different paradigms of matching. In our MMN model, each paradigm is inspired by how human think and designed under a unified compose-match framework. To demonstrate the effectiveness of our model, we evaluate MMN on a large-scale multiple choice machine reading comprehension dataset (i.e. RACE). Empirical results show that our proposed model achieves a significant improvement compared to strong baselines and obtains state-of-the-art results.</description><issn>2159-5399</issn><issn>2374-3468</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo1kNtKxDAYhIMouKz7Bl70BVLzN2kOd0rxBLsKotchzcFGu9uSVMW3d-vq3MzADHPxIXQOpARO1IUxJpaflEYCJaUEBJHyCC0qKhimjMvjfYZa4ZoqdYpWOb-RvZgCALFAl5uPfop4Yybbxd1r8eCnryG9F2FIxW819r5ouiFaXzx54-ZNM2zH5Du_y3HYnaGTYPrsV3--RC8318_NHV4_3t43V2tsQcKEKWc8kKBMFUBYS2QrDWMcKlu1jDHXStJKF5wjYKn3AE7WXgAXtvUOlKJLxA6_Ng05Jx_0mOLWpG8NRM8g9AxCH0DofxD0B_mKUvQ</recordid><startdate>20190717</startdate><enddate>20190717</enddate><creator>Tang, Min</creator><creator>Cai, Jiaran</creator><creator>Zhuo, Hankz Hankui</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190717</creationdate><title>Multi-Matching Network for Multiple Choice Reading Comprehension</title><author>Tang, Min ; Cai, Jiaran ; Zhuo, Hankz Hankui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-3646f0f9a2f17cc08b8a44612c2b444db80b8dfdd01c3ee11d85e7167cbed1993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Tang, Min</creatorcontrib><creatorcontrib>Cai, Jiaran</creatorcontrib><creatorcontrib>Zhuo, Hankz Hankui</creatorcontrib><collection>CrossRef</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Min</au><au>Cai, Jiaran</au><au>Zhuo, Hankz Hankui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-Matching Network for Multiple Choice Reading Comprehension</atitle><btitle>Proceedings of the ... AAAI Conference on Artificial Intelligence</btitle><date>2019-07-17</date><risdate>2019</risdate><volume>33</volume><issue>1</issue><spage>7088</spage><epage>7095</epage><pages>7088-7095</pages><issn>2159-5399</issn><eissn>2374-3468</eissn><abstract>Multiple-choice machine reading comprehension is an important and challenging task where the machine is required to select the correct answer from a set of candidate answers given passage and question. Existing approaches either match extracted evidence with candidate answers shallowly or model passage, question and candidate answers with a single paradigm of matching. In this paper, we propose Multi-Matching Network (MMN) which models the semantic relationship among passage, question and candidate answers from multiple different paradigms of matching. In our MMN model, each paradigm is inspired by how human think and designed under a unified compose-match framework. To demonstrate the effectiveness of our model, we evaluate MMN on a large-scale multiple choice machine reading comprehension dataset (i.e. RACE). Empirical results show that our proposed model achieves a significant improvement compared to strong baselines and obtains state-of-the-art results.</abstract><doi>10.1609/aaai.v33i01.33017088</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2159-5399 |
ispartof | Proceedings of the ... AAAI Conference on Artificial Intelligence, 2019, Vol.33 (1), p.7088-7095 |
issn | 2159-5399 2374-3468 |
language | eng |
recordid | cdi_crossref_primary_10_1609_aaai_v33i01_33017088 |
source | Freely Accessible Journals |
title | Multi-Matching Network for Multiple Choice Reading Comprehension |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-Matching%20Network%20for%20Multiple%20Choice%20Reading%20Comprehension&rft.btitle=Proceedings%20of%20the%20...%20AAAI%20Conference%20on%20Artificial%20Intelligence&rft.au=Tang,%20Min&rft.date=2019-07-17&rft.volume=33&rft.issue=1&rft.spage=7088&rft.epage=7095&rft.pages=7088-7095&rft.issn=2159-5399&rft.eissn=2374-3468&rft_id=info:doi/10.1609/aaai.v33i01.33017088&rft_dat=%3Ccrossref%3E10_1609_aaai_v33i01_33017088%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c181t-3646f0f9a2f17cc08b8a44612c2b444db80b8dfdd01c3ee11d85e7167cbed1993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |