Loading…

Augmenting the Power of (Partial) MaxSat Resolution with Extension

The refutation power of SAT and MaxSAT resolution is challenged by problems like the soft and hard Pigeon Hole Problem PHP for which short refutations do not exist. In this paper we augment the MaxSAT resolution proof system with an extension rule. The new proof system MaxResE is sound and complete,...

Full description

Saved in:
Bibliographic Details
Main Authors: Larrosa, Javier, Rollon, Emma
Format: Conference Proceeding
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The refutation power of SAT and MaxSAT resolution is challenged by problems like the soft and hard Pigeon Hole Problem PHP for which short refutations do not exist. In this paper we augment the MaxSAT resolution proof system with an extension rule. The new proof system MaxResE is sound and complete, and more powerful than plain MaxSAT resolution, since it can refute the soft and hard PHP in polynomial time. We show that MaxResE refutations actually subtract lower bounds from the objective function encoded by the formulas. The resulting formula is the residual after the lower bound extraction. We experimentally show that the residual of the soft PHP (once its necessary cost of 1 has been efficiently subtracted with MaxResE) is a concise, easy to solve, satisfiable problem.
ISSN:2159-5399
2374-3468
DOI:10.1609/aaai.v34i02.5516