Loading…

Low-Variance Black-Box Gradient Estimates for the Plackett-Luce Distribution

Learning models with discrete latent variables using stochastic gradient descent remains a challenge due to the high variance of gradient estimates. Modern variance reduction techniques mostly consider categorical distributions and have limited applicability when the number of possible outcomes beco...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the ... AAAI Conference on Artificial Intelligence 2020-04, Vol.34 (6), p.10126-10135
Main Authors: Gadetsky, Artyom, Struminsky, Kirill, Robinson, Christopher, Quadrianto, Novi, Vetrov, Dmitry
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 10135
container_issue 6
container_start_page 10126
container_title Proceedings of the ... AAAI Conference on Artificial Intelligence
container_volume 34
creator Gadetsky, Artyom
Struminsky, Kirill
Robinson, Christopher
Quadrianto, Novi
Vetrov, Dmitry
description Learning models with discrete latent variables using stochastic gradient descent remains a challenge due to the high variance of gradient estimates. Modern variance reduction techniques mostly consider categorical distributions and have limited applicability when the number of possible outcomes becomes large. In this work, we consider models with latent permutations and propose control variates for the Plackett-Luce distribution. In particular, the control variates allow us to optimize black-box functions over permutations using stochastic gradient descent. To illustrate the approach, we consider a variety of causal structure learning tasks for continuous and discrete data. We show that our method outperforms competitive relaxation-based optimization methods and is also applicable to non-differentiable score functions.
doi_str_mv 10.1609/aaai.v34i06.6572
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1609_aaai_v34i06_6572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1609_aaai_v34i06_6572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c168t-2f026727f319137bc78ea766df5d911bc6f0562b3bc4f2355eb28486e38638be3</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EElXpnqV_wMGP-LWkpRSkSLAAtpbt2MJQEmS7PP6eRGU2M4t7R0cHgEuCGyKwvrLWpuaLtQmLRnBJT8CCMtki1gp1Ot2Ea8SZ1udgVcobnqbVhBC5AF03fqMXm5MdfIDrvfXvaD3-wF22fQpDhdtS04etocA4ZlhfA3ycQ6FW1B2myk0qNSd3qGkcLsBZtPsSVv97CZ5vt0-bO9Q97O431x3yRKiKaMRUSCojI5ow6bxUwUoh-sj7Cct5ETEX1DHn20gZ58FR1SoRmBJMucCWAB__-jyWkkM0n3mCzL-GYDMLMbMQcxRiZiHsD6s0VIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low-Variance Black-Box Gradient Estimates for the Plackett-Luce Distribution</title><source>Freely Accessible Journals</source><creator>Gadetsky, Artyom ; Struminsky, Kirill ; Robinson, Christopher ; Quadrianto, Novi ; Vetrov, Dmitry</creator><creatorcontrib>Gadetsky, Artyom ; Struminsky, Kirill ; Robinson, Christopher ; Quadrianto, Novi ; Vetrov, Dmitry</creatorcontrib><description>Learning models with discrete latent variables using stochastic gradient descent remains a challenge due to the high variance of gradient estimates. Modern variance reduction techniques mostly consider categorical distributions and have limited applicability when the number of possible outcomes becomes large. In this work, we consider models with latent permutations and propose control variates for the Plackett-Luce distribution. In particular, the control variates allow us to optimize black-box functions over permutations using stochastic gradient descent. To illustrate the approach, we consider a variety of causal structure learning tasks for continuous and discrete data. We show that our method outperforms competitive relaxation-based optimization methods and is also applicable to non-differentiable score functions.</description><identifier>ISSN: 2159-5399</identifier><identifier>EISSN: 2374-3468</identifier><identifier>DOI: 10.1609/aaai.v34i06.6572</identifier><language>eng</language><ispartof>Proceedings of the ... AAAI Conference on Artificial Intelligence, 2020-04, Vol.34 (6), p.10126-10135</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gadetsky, Artyom</creatorcontrib><creatorcontrib>Struminsky, Kirill</creatorcontrib><creatorcontrib>Robinson, Christopher</creatorcontrib><creatorcontrib>Quadrianto, Novi</creatorcontrib><creatorcontrib>Vetrov, Dmitry</creatorcontrib><title>Low-Variance Black-Box Gradient Estimates for the Plackett-Luce Distribution</title><title>Proceedings of the ... AAAI Conference on Artificial Intelligence</title><description>Learning models with discrete latent variables using stochastic gradient descent remains a challenge due to the high variance of gradient estimates. Modern variance reduction techniques mostly consider categorical distributions and have limited applicability when the number of possible outcomes becomes large. In this work, we consider models with latent permutations and propose control variates for the Plackett-Luce distribution. In particular, the control variates allow us to optimize black-box functions over permutations using stochastic gradient descent. To illustrate the approach, we consider a variety of causal structure learning tasks for continuous and discrete data. We show that our method outperforms competitive relaxation-based optimization methods and is also applicable to non-differentiable score functions.</description><issn>2159-5399</issn><issn>2374-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRS0EElXpnqV_wMGP-LWkpRSkSLAAtpbt2MJQEmS7PP6eRGU2M4t7R0cHgEuCGyKwvrLWpuaLtQmLRnBJT8CCMtki1gp1Ot2Ea8SZ1udgVcobnqbVhBC5AF03fqMXm5MdfIDrvfXvaD3-wF22fQpDhdtS04etocA4ZlhfA3ycQ6FW1B2myk0qNSd3qGkcLsBZtPsSVv97CZ5vt0-bO9Q97O431x3yRKiKaMRUSCojI5ow6bxUwUoh-sj7Cct5ETEX1DHn20gZ58FR1SoRmBJMucCWAB__-jyWkkM0n3mCzL-GYDMLMbMQcxRiZiHsD6s0VIo</recordid><startdate>20200403</startdate><enddate>20200403</enddate><creator>Gadetsky, Artyom</creator><creator>Struminsky, Kirill</creator><creator>Robinson, Christopher</creator><creator>Quadrianto, Novi</creator><creator>Vetrov, Dmitry</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200403</creationdate><title>Low-Variance Black-Box Gradient Estimates for the Plackett-Luce Distribution</title><author>Gadetsky, Artyom ; Struminsky, Kirill ; Robinson, Christopher ; Quadrianto, Novi ; Vetrov, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c168t-2f026727f319137bc78ea766df5d911bc6f0562b3bc4f2355eb28486e38638be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Gadetsky, Artyom</creatorcontrib><creatorcontrib>Struminsky, Kirill</creatorcontrib><creatorcontrib>Robinson, Christopher</creatorcontrib><creatorcontrib>Quadrianto, Novi</creatorcontrib><creatorcontrib>Vetrov, Dmitry</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the ... AAAI Conference on Artificial Intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gadetsky, Artyom</au><au>Struminsky, Kirill</au><au>Robinson, Christopher</au><au>Quadrianto, Novi</au><au>Vetrov, Dmitry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Variance Black-Box Gradient Estimates for the Plackett-Luce Distribution</atitle><jtitle>Proceedings of the ... AAAI Conference on Artificial Intelligence</jtitle><date>2020-04-03</date><risdate>2020</risdate><volume>34</volume><issue>6</issue><spage>10126</spage><epage>10135</epage><pages>10126-10135</pages><issn>2159-5399</issn><eissn>2374-3468</eissn><abstract>Learning models with discrete latent variables using stochastic gradient descent remains a challenge due to the high variance of gradient estimates. Modern variance reduction techniques mostly consider categorical distributions and have limited applicability when the number of possible outcomes becomes large. In this work, we consider models with latent permutations and propose control variates for the Plackett-Luce distribution. In particular, the control variates allow us to optimize black-box functions over permutations using stochastic gradient descent. To illustrate the approach, we consider a variety of causal structure learning tasks for continuous and discrete data. We show that our method outperforms competitive relaxation-based optimization methods and is also applicable to non-differentiable score functions.</abstract><doi>10.1609/aaai.v34i06.6572</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2159-5399
ispartof Proceedings of the ... AAAI Conference on Artificial Intelligence, 2020-04, Vol.34 (6), p.10126-10135
issn 2159-5399
2374-3468
language eng
recordid cdi_crossref_primary_10_1609_aaai_v34i06_6572
source Freely Accessible Journals
title Low-Variance Black-Box Gradient Estimates for the Plackett-Luce Distribution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Variance%20Black-Box%20Gradient%20Estimates%20for%20the%20Plackett-Luce%20Distribution&rft.jtitle=Proceedings%20of%20the%20...%20AAAI%20Conference%20on%20Artificial%20Intelligence&rft.au=Gadetsky,%20Artyom&rft.date=2020-04-03&rft.volume=34&rft.issue=6&rft.spage=10126&rft.epage=10135&rft.pages=10126-10135&rft.issn=2159-5399&rft.eissn=2374-3468&rft_id=info:doi/10.1609/aaai.v34i06.6572&rft_dat=%3Ccrossref%3E10_1609_aaai_v34i06_6572%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c168t-2f026727f319137bc78ea766df5d911bc6f0562b3bc4f2355eb28486e38638be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true