Loading…

Accelerating Ranking in E-Commerce Search Engines through Contextual Factor Selection

In large-scale search systems, the quality of the ranking results is continually improved with the introduction of more factors from complex procedures. Meanwhile, the increase in factors demands more computation resources and increases system response latency. It has been observed that, under some...

Full description

Saved in:
Bibliographic Details
Main Authors: Zeng, Anxiang, Yu, Han, Da, Qing, Zhan, Yusen, Miao, Chunyan
Format: Conference Proceeding
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In large-scale search systems, the quality of the ranking results is continually improved with the introduction of more factors from complex procedures. Meanwhile, the increase in factors demands more computation resources and increases system response latency. It has been observed that, under some certain context a search instance may require only a small set of useful factors instead of all factors in order to return high quality results. Therefore, removing ineffective factors accordingly can significantly improve system efficiency. In this paper, we report our experience incorporating our Contextual Factor Selection (CFS) approach into the Taobao e-commerce platform to optimize the selection of factors based on the context of each search query in order to simultaneously achieve high quality search results while significantly reducing latency time. This problem is treated as a combinatorial optimization problem which can be tackled through a sequential decision-making procedure. The problem can be efficiently solved by CFS through a deep reinforcement learning method with reward shaping to address the problems of reward signal scarcity and wide reward signal distribution in real-world search engines. Through extensive off-line experiments based on data from the Taobao.com platform, CFS is shown to significantly outperform state-of-the-art approaches. Online deployment on Taobao.com demonstrated that CFS is able to reduce average search latency time by more than 40% compared to the previous approach with negligible reduction in search result quality. Under peak usage during the Single's Day Shopping Festival (November 11th) in 2017, CFS reduced peak load search latency time by 33% compared to the previous approach, helping Taobao.com achieve 40% higher revenue than the same period during 2016.   Corrigendum The spelling of coauthor Yusen Zan in the paper "Accelerating Ranking in E-Commerce Search Engines through Contextual Factor Selection" has been changed from Zan to Zhan. The original spelling was a typographical error. 
ISSN:2159-5399
2374-3468
DOI:10.1609/aaai.v34i08.7026