Loading…

A Heuristic Evaluation Function for Hand Strength Estimation in Gin Rummy

This paper describes a fast hand strength estimation mod-el for the game of Gin Rummy. The algorithm is computationally inexpensive, and it incorporates not only cards in the player’s hand but also cards known to be in the opponent’s hand, cards in the discard pile, and the current game stage. This...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmed, Aqib, Leppo, Joshua, Lesniewski, Michal, Patel, Riken, Perez, Jonathan, Blum, Jeremy
Format: Conference Proceeding
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 15471
container_issue 17
container_start_page 15465
container_title
container_volume 35
creator Ahmed, Aqib
Leppo, Joshua
Lesniewski, Michal
Patel, Riken
Perez, Jonathan
Blum, Jeremy
description This paper describes a fast hand strength estimation mod-el for the game of Gin Rummy. The algorithm is computationally inexpensive, and it incorporates not only cards in the player’s hand but also cards known to be in the opponent’s hand, cards in the discard pile, and the current game stage. This algorithm is used in conjunction with counterfactual regret (CFR) minimization to develop a gin rummy bot. CFR strategies were developed for the knocking strategies. The hand strength estimation algorithm was used to select a discard that balances the goals of maximizing the utility of the player’s hand and minimizing the likelihood that a card will be useful to the opponent. A study of the parameterization of this estimation algorithm demonstrates the soundness of approach as well as good performance under a wide range of parameter values.
doi_str_mv 10.1609/aaai.v35i17.17820
format conference_proceeding
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1609_aaai_v35i17_17820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1609_aaai_v35i17_17820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c127t-2ccd434ce0df68d95b29f3d52aa1635cc5802f252e7965d99c31fe8b98ca0f7a3</originalsourceid><addsrcrecordid>eNotkM1qwzAQhEVpoSHNA_SmF7CrlSxLOobgxIFAoT9nochSqxLbRbIDefs6cReGncMwDB9Cz0ByKIl6McaE_Mx4AJGDkJTcoQVloshYUcr7yQNXGWdKPaJVSj9kukIBgFig_RrXbowhDcHi6mxOoxlC3-Ht2Nmb8X3Eteka_D5E130N37iasu2cCh3eTXob2_byhB68OSW3-v9L9LmtPjZ1dnjd7TfrQ2aBiiGj1jYFK6wjjS9lo_iRKs8aTo2BknFruSTUU06dUCVvlLIMvJNHJa0hXhi2RDD32tinFJ3Xv3HaEy8aiL7i0FccesahbzjYH3Y0VLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Heuristic Evaluation Function for Hand Strength Estimation in Gin Rummy</title><source>Freely Accessible Science Journals</source><creator>Ahmed, Aqib ; Leppo, Joshua ; Lesniewski, Michal ; Patel, Riken ; Perez, Jonathan ; Blum, Jeremy</creator><creatorcontrib>Ahmed, Aqib ; Leppo, Joshua ; Lesniewski, Michal ; Patel, Riken ; Perez, Jonathan ; Blum, Jeremy</creatorcontrib><description>This paper describes a fast hand strength estimation mod-el for the game of Gin Rummy. The algorithm is computationally inexpensive, and it incorporates not only cards in the player’s hand but also cards known to be in the opponent’s hand, cards in the discard pile, and the current game stage. This algorithm is used in conjunction with counterfactual regret (CFR) minimization to develop a gin rummy bot. CFR strategies were developed for the knocking strategies. The hand strength estimation algorithm was used to select a discard that balances the goals of maximizing the utility of the player’s hand and minimizing the likelihood that a card will be useful to the opponent. A study of the parameterization of this estimation algorithm demonstrates the soundness of approach as well as good performance under a wide range of parameter values.</description><identifier>ISSN: 2159-5399</identifier><identifier>EISSN: 2374-3468</identifier><identifier>DOI: 10.1609/aaai.v35i17.17820</identifier><language>eng</language><ispartof>Proceedings of the ... AAAI Conference on Artificial Intelligence, 2021, Vol.35 (17), p.15465-15471</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Ahmed, Aqib</creatorcontrib><creatorcontrib>Leppo, Joshua</creatorcontrib><creatorcontrib>Lesniewski, Michal</creatorcontrib><creatorcontrib>Patel, Riken</creatorcontrib><creatorcontrib>Perez, Jonathan</creatorcontrib><creatorcontrib>Blum, Jeremy</creatorcontrib><title>A Heuristic Evaluation Function for Hand Strength Estimation in Gin Rummy</title><title>Proceedings of the ... AAAI Conference on Artificial Intelligence</title><description>This paper describes a fast hand strength estimation mod-el for the game of Gin Rummy. The algorithm is computationally inexpensive, and it incorporates not only cards in the player’s hand but also cards known to be in the opponent’s hand, cards in the discard pile, and the current game stage. This algorithm is used in conjunction with counterfactual regret (CFR) minimization to develop a gin rummy bot. CFR strategies were developed for the knocking strategies. The hand strength estimation algorithm was used to select a discard that balances the goals of maximizing the utility of the player’s hand and minimizing the likelihood that a card will be useful to the opponent. A study of the parameterization of this estimation algorithm demonstrates the soundness of approach as well as good performance under a wide range of parameter values.</description><issn>2159-5399</issn><issn>2374-3468</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1qwzAQhEVpoSHNA_SmF7CrlSxLOobgxIFAoT9nochSqxLbRbIDefs6cReGncMwDB9Cz0ByKIl6McaE_Mx4AJGDkJTcoQVloshYUcr7yQNXGWdKPaJVSj9kukIBgFig_RrXbowhDcHi6mxOoxlC3-Ht2Nmb8X3Eteka_D5E130N37iasu2cCh3eTXob2_byhB68OSW3-v9L9LmtPjZ1dnjd7TfrQ2aBiiGj1jYFK6wjjS9lo_iRKs8aTo2BknFruSTUU06dUCVvlLIMvJNHJa0hXhi2RDD32tinFJ3Xv3HaEy8aiL7i0FccesahbzjYH3Y0VLM</recordid><startdate>20210518</startdate><enddate>20210518</enddate><creator>Ahmed, Aqib</creator><creator>Leppo, Joshua</creator><creator>Lesniewski, Michal</creator><creator>Patel, Riken</creator><creator>Perez, Jonathan</creator><creator>Blum, Jeremy</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210518</creationdate><title>A Heuristic Evaluation Function for Hand Strength Estimation in Gin Rummy</title><author>Ahmed, Aqib ; Leppo, Joshua ; Lesniewski, Michal ; Patel, Riken ; Perez, Jonathan ; Blum, Jeremy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c127t-2ccd434ce0df68d95b29f3d52aa1635cc5802f252e7965d99c31fe8b98ca0f7a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Aqib</creatorcontrib><creatorcontrib>Leppo, Joshua</creatorcontrib><creatorcontrib>Lesniewski, Michal</creatorcontrib><creatorcontrib>Patel, Riken</creatorcontrib><creatorcontrib>Perez, Jonathan</creatorcontrib><creatorcontrib>Blum, Jeremy</creatorcontrib><collection>CrossRef</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Aqib</au><au>Leppo, Joshua</au><au>Lesniewski, Michal</au><au>Patel, Riken</au><au>Perez, Jonathan</au><au>Blum, Jeremy</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Heuristic Evaluation Function for Hand Strength Estimation in Gin Rummy</atitle><btitle>Proceedings of the ... AAAI Conference on Artificial Intelligence</btitle><date>2021-05-18</date><risdate>2021</risdate><volume>35</volume><issue>17</issue><spage>15465</spage><epage>15471</epage><pages>15465-15471</pages><issn>2159-5399</issn><eissn>2374-3468</eissn><abstract>This paper describes a fast hand strength estimation mod-el for the game of Gin Rummy. The algorithm is computationally inexpensive, and it incorporates not only cards in the player’s hand but also cards known to be in the opponent’s hand, cards in the discard pile, and the current game stage. This algorithm is used in conjunction with counterfactual regret (CFR) minimization to develop a gin rummy bot. CFR strategies were developed for the knocking strategies. The hand strength estimation algorithm was used to select a discard that balances the goals of maximizing the utility of the player’s hand and minimizing the likelihood that a card will be useful to the opponent. A study of the parameterization of this estimation algorithm demonstrates the soundness of approach as well as good performance under a wide range of parameter values.</abstract><doi>10.1609/aaai.v35i17.17820</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2159-5399
ispartof Proceedings of the ... AAAI Conference on Artificial Intelligence, 2021, Vol.35 (17), p.15465-15471
issn 2159-5399
2374-3468
language eng
recordid cdi_crossref_primary_10_1609_aaai_v35i17_17820
source Freely Accessible Science Journals
title A Heuristic Evaluation Function for Hand Strength Estimation in Gin Rummy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Heuristic%20Evaluation%20Function%20for%20Hand%20Strength%20Estimation%20in%20Gin%20Rummy&rft.btitle=Proceedings%20of%20the%20...%20AAAI%20Conference%20on%20Artificial%20Intelligence&rft.au=Ahmed,%20Aqib&rft.date=2021-05-18&rft.volume=35&rft.issue=17&rft.spage=15465&rft.epage=15471&rft.pages=15465-15471&rft.issn=2159-5399&rft.eissn=2374-3468&rft_id=info:doi/10.1609/aaai.v35i17.17820&rft_dat=%3Ccrossref%3E10_1609_aaai_v35i17_17820%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c127t-2ccd434ce0df68d95b29f3d52aa1635cc5802f252e7965d99c31fe8b98ca0f7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true