Loading…
Offline Reinforcement Learning as Anti-exploration
Offline Reinforcement Learning (RL) aims at learning an optimal control from a fixed dataset, without interactions with the system. An agent in this setting should avoid selecting actions whose consequences cannot be predicted from the data. This is the converse of exploration in RL, which favors su...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c173t-7e9d3b0bb300069fd34901f8d7c655a8d359ecda69385e5bbba163962d3b05f43 |
---|---|
cites | |
container_end_page | 8114 |
container_issue | 7 |
container_start_page | 8106 |
container_title | |
container_volume | 36 |
creator | Rezaeifar, Shideh Dadashi, Robert Vieillard, Nino Hussenot, Léonard Bachem, Olivier Pietquin, Olivier Geist, Matthieu |
description | Offline Reinforcement Learning (RL) aims at learning an optimal control from a fixed dataset, without interactions with the system. An agent in this setting should avoid selecting actions whose consequences cannot be predicted from the data. This is the converse of exploration in RL, which favors such actions. We thus take inspiration from the literature on bonus-based exploration to design a new offline RL agent. The core idea is to subtract a prediction-based exploration bonus from the reward, instead of adding it for exploration. This allows the policy to stay close to the support of the dataset and practically extends some previous pessimism-based offline RL methods to a deep learning setting with arbitrary bonuses. We also connect this approach to a more common regularization of the learned policy towards the data. Instantiated with a bonus based on the prediction error of a variational autoencoder, we show that our simple agent is competitive with the state of the art on a set of continuous control locomotion and manipulation tasks. |
doi_str_mv | 10.1609/aaai.v36i7.20783 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1609_aaai_v36i7_20783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1609_aaai_v36i7_20783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c173t-7e9d3b0bb300069fd34901f8d7c655a8d359ecda69385e5bbba163962d3b05f43</originalsourceid><addsrcrecordid>eNotj8tqwzAUREVpoCHNvkv_gFzJ15KsZQh9gSEQmrW4sqWi4shBMqX9-9ppZzOzmRkOIQ-clVwy_YiIofwCGVRZMdXADVlXoGoKtWxu58yFpgK0viPbnD_ZrFpzztWaVAfvhxBdcXQh-jF17uziVLQOUwzxo8Bc7OIUqPu-DGPCKYzxnqw8Dtlt_31DTs9P7_tX2h5e3va7lnZcwUSV0z1YZi3Md1L7HmrNuG961UkhsOlBaNf1KDU0wglrLXIJWlZLS_gaNoT97XZpzDk5by4pnDH9GM7Mgm0WbHPFNlds-AXIzkwO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Offline Reinforcement Learning as Anti-exploration</title><source>Freely Accessible Journals</source><creator>Rezaeifar, Shideh ; Dadashi, Robert ; Vieillard, Nino ; Hussenot, Léonard ; Bachem, Olivier ; Pietquin, Olivier ; Geist, Matthieu</creator><creatorcontrib>Rezaeifar, Shideh ; Dadashi, Robert ; Vieillard, Nino ; Hussenot, Léonard ; Bachem, Olivier ; Pietquin, Olivier ; Geist, Matthieu</creatorcontrib><description>Offline Reinforcement Learning (RL) aims at learning an optimal control from a fixed dataset, without interactions with the system. An agent in this setting should avoid selecting actions whose consequences cannot be predicted from the data. This is the converse of exploration in RL, which favors such actions. We thus take inspiration from the literature on bonus-based exploration to design a new offline RL agent. The core idea is to subtract a prediction-based exploration bonus from the reward, instead of adding it for exploration. This allows the policy to stay close to the support of the dataset and practically extends some previous pessimism-based offline RL methods to a deep learning setting with arbitrary bonuses. We also connect this approach to a more common regularization of the learned policy towards the data. Instantiated with a bonus based on the prediction error of a variational autoencoder, we show that our simple agent is competitive with the state of the art on a set of continuous control locomotion and manipulation tasks.</description><identifier>ISSN: 2159-5399</identifier><identifier>EISSN: 2374-3468</identifier><identifier>DOI: 10.1609/aaai.v36i7.20783</identifier><language>eng</language><ispartof>Proceedings of the ... AAAI Conference on Artificial Intelligence, 2022, Vol.36 (7), p.8106-8114</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c173t-7e9d3b0bb300069fd34901f8d7c655a8d359ecda69385e5bbba163962d3b05f43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Rezaeifar, Shideh</creatorcontrib><creatorcontrib>Dadashi, Robert</creatorcontrib><creatorcontrib>Vieillard, Nino</creatorcontrib><creatorcontrib>Hussenot, Léonard</creatorcontrib><creatorcontrib>Bachem, Olivier</creatorcontrib><creatorcontrib>Pietquin, Olivier</creatorcontrib><creatorcontrib>Geist, Matthieu</creatorcontrib><title>Offline Reinforcement Learning as Anti-exploration</title><title>Proceedings of the ... AAAI Conference on Artificial Intelligence</title><description>Offline Reinforcement Learning (RL) aims at learning an optimal control from a fixed dataset, without interactions with the system. An agent in this setting should avoid selecting actions whose consequences cannot be predicted from the data. This is the converse of exploration in RL, which favors such actions. We thus take inspiration from the literature on bonus-based exploration to design a new offline RL agent. The core idea is to subtract a prediction-based exploration bonus from the reward, instead of adding it for exploration. This allows the policy to stay close to the support of the dataset and practically extends some previous pessimism-based offline RL methods to a deep learning setting with arbitrary bonuses. We also connect this approach to a more common regularization of the learned policy towards the data. Instantiated with a bonus based on the prediction error of a variational autoencoder, we show that our simple agent is competitive with the state of the art on a set of continuous control locomotion and manipulation tasks.</description><issn>2159-5399</issn><issn>2374-3468</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj8tqwzAUREVpoCHNvkv_gFzJ15KsZQh9gSEQmrW4sqWi4shBMqX9-9ppZzOzmRkOIQ-clVwy_YiIofwCGVRZMdXADVlXoGoKtWxu58yFpgK0viPbnD_ZrFpzztWaVAfvhxBdcXQh-jF17uziVLQOUwzxo8Bc7OIUqPu-DGPCKYzxnqw8Dtlt_31DTs9P7_tX2h5e3va7lnZcwUSV0z1YZi3Md1L7HmrNuG961UkhsOlBaNf1KDU0wglrLXIJWlZLS_gaNoT97XZpzDk5by4pnDH9GM7Mgm0WbHPFNlds-AXIzkwO</recordid><startdate>20220628</startdate><enddate>20220628</enddate><creator>Rezaeifar, Shideh</creator><creator>Dadashi, Robert</creator><creator>Vieillard, Nino</creator><creator>Hussenot, Léonard</creator><creator>Bachem, Olivier</creator><creator>Pietquin, Olivier</creator><creator>Geist, Matthieu</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220628</creationdate><title>Offline Reinforcement Learning as Anti-exploration</title><author>Rezaeifar, Shideh ; Dadashi, Robert ; Vieillard, Nino ; Hussenot, Léonard ; Bachem, Olivier ; Pietquin, Olivier ; Geist, Matthieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c173t-7e9d3b0bb300069fd34901f8d7c655a8d359ecda69385e5bbba163962d3b05f43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rezaeifar, Shideh</creatorcontrib><creatorcontrib>Dadashi, Robert</creatorcontrib><creatorcontrib>Vieillard, Nino</creatorcontrib><creatorcontrib>Hussenot, Léonard</creatorcontrib><creatorcontrib>Bachem, Olivier</creatorcontrib><creatorcontrib>Pietquin, Olivier</creatorcontrib><creatorcontrib>Geist, Matthieu</creatorcontrib><collection>CrossRef</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezaeifar, Shideh</au><au>Dadashi, Robert</au><au>Vieillard, Nino</au><au>Hussenot, Léonard</au><au>Bachem, Olivier</au><au>Pietquin, Olivier</au><au>Geist, Matthieu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Offline Reinforcement Learning as Anti-exploration</atitle><btitle>Proceedings of the ... AAAI Conference on Artificial Intelligence</btitle><date>2022-06-28</date><risdate>2022</risdate><volume>36</volume><issue>7</issue><spage>8106</spage><epage>8114</epage><pages>8106-8114</pages><issn>2159-5399</issn><eissn>2374-3468</eissn><abstract>Offline Reinforcement Learning (RL) aims at learning an optimal control from a fixed dataset, without interactions with the system. An agent in this setting should avoid selecting actions whose consequences cannot be predicted from the data. This is the converse of exploration in RL, which favors such actions. We thus take inspiration from the literature on bonus-based exploration to design a new offline RL agent. The core idea is to subtract a prediction-based exploration bonus from the reward, instead of adding it for exploration. This allows the policy to stay close to the support of the dataset and practically extends some previous pessimism-based offline RL methods to a deep learning setting with arbitrary bonuses. We also connect this approach to a more common regularization of the learned policy towards the data. Instantiated with a bonus based on the prediction error of a variational autoencoder, we show that our simple agent is competitive with the state of the art on a set of continuous control locomotion and manipulation tasks.</abstract><doi>10.1609/aaai.v36i7.20783</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2159-5399 |
ispartof | Proceedings of the ... AAAI Conference on Artificial Intelligence, 2022, Vol.36 (7), p.8106-8114 |
issn | 2159-5399 2374-3468 |
language | eng |
recordid | cdi_crossref_primary_10_1609_aaai_v36i7_20783 |
source | Freely Accessible Journals |
title | Offline Reinforcement Learning as Anti-exploration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Offline%20Reinforcement%20Learning%20as%20Anti-exploration&rft.btitle=Proceedings%20of%20the%20...%20AAAI%20Conference%20on%20Artificial%20Intelligence&rft.au=Rezaeifar,%20Shideh&rft.date=2022-06-28&rft.volume=36&rft.issue=7&rft.spage=8106&rft.epage=8114&rft.pages=8106-8114&rft.issn=2159-5399&rft.eissn=2374-3468&rft_id=info:doi/10.1609/aaai.v36i7.20783&rft_dat=%3Ccrossref%3E10_1609_aaai_v36i7_20783%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c173t-7e9d3b0bb300069fd34901f8d7c655a8d359ecda69385e5bbba163962d3b05f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |