Loading…
PUPS: Point Cloud Unified Panoptic Segmentation
Point cloud panoptic segmentation is a challenging task that seeks a holistic solution for both semantic and instance segmentation to predict groupings of coherent points. Previous approaches treat semantic and instance segmentation as surrogate tasks, and they either use clustering methods or bound...
Saved in:
Published in: | Proceedings of the ... AAAI Conference on Artificial Intelligence 2023-06, Vol.37 (2), p.2339-2347 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c215t-158dabef61d5ff8ce0242c92a5699f5aeea0fa3a19952f251daf6692d56be6883 |
---|---|
cites | |
container_end_page | 2347 |
container_issue | 2 |
container_start_page | 2339 |
container_title | Proceedings of the ... AAAI Conference on Artificial Intelligence |
container_volume | 37 |
creator | Su, Shihao Xu, Jianyun Wang, Huanyu Miao, Zhenwei Zhan, Xin Hao, Dayang Li, Xi |
description | Point cloud panoptic segmentation is a challenging task that seeks a holistic solution for both semantic and instance segmentation to predict groupings of coherent points. Previous approaches treat semantic and instance segmentation as surrogate tasks, and they either use clustering methods or bounding boxes to gather instance groupings with costly computation and hand-craft designs in the instance segmentation task. In this paper, we propose a simple but effective point cloud unified panoptic segmentation (PUPS) framework, which use a set of point-level classifiers to directly predict semantic and instance groupings in an end-to-end manner. To realize PUPS, we introduce bipartite matching to our training pipeline so that our classifiers are able to exclusively predict groupings of instances, getting rid of hand-crafted designs, e.g. anchors and Non-Maximum Suppression (NMS). In order to achieve better grouping results, we utilize a transformer decoder to iteratively refine the point classifiers and develop a context-aware CutMix augmentation to overcome the class imbalance problem. As a result, PUPS achieves 1st place on the leader board of SemanticKITTI panoptic segmentation task and state-of-the-art results on nuScenes. |
doi_str_mv | 10.1609/aaai.v37i2.25329 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1609_aaai_v37i2_25329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1609_aaai_v37i2_25329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c215t-158dabef61d5ff8ce0242c92a5699f5aeea0fa3a19952f251daf6692d56be6883</originalsourceid><addsrcrecordid>eNotz81qwzAQBGBRWmhIc-_RLyBHK1myt7di-geBGlKfxcaSikpiB1st9O3rpNnL7GmGj7F7EDkYgWsiivmPKqPMpVYSr9hCqrLgqjDV9fyDRq4V4i1bTdOXmK9AACgXbN20zfYha4bYp6zeD98ua_sYondZQ_1wTLHLtv7z4PtEKQ79HbsJtJ_86pJL1j4_fdSvfPP-8lY_bng3jyUOunK088GA0yFUnReykB1K0gYxaPKeRCBFgKhlkBocBWNQOm123lSVWjLx39uNwzSNPtjjGA80_loQ9mS2J7M9m-3ZrP4AUlhKrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PUPS: Point Cloud Unified Panoptic Segmentation</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><creator>Su, Shihao ; Xu, Jianyun ; Wang, Huanyu ; Miao, Zhenwei ; Zhan, Xin ; Hao, Dayang ; Li, Xi</creator><creatorcontrib>Su, Shihao ; Xu, Jianyun ; Wang, Huanyu ; Miao, Zhenwei ; Zhan, Xin ; Hao, Dayang ; Li, Xi</creatorcontrib><description>Point cloud panoptic segmentation is a challenging task that seeks a holistic solution for both semantic and instance segmentation to predict groupings of coherent points. Previous approaches treat semantic and instance segmentation as surrogate tasks, and they either use clustering methods or bounding boxes to gather instance groupings with costly computation and hand-craft designs in the instance segmentation task. In this paper, we propose a simple but effective point cloud unified panoptic segmentation (PUPS) framework, which use a set of point-level classifiers to directly predict semantic and instance groupings in an end-to-end manner. To realize PUPS, we introduce bipartite matching to our training pipeline so that our classifiers are able to exclusively predict groupings of instances, getting rid of hand-crafted designs, e.g. anchors and Non-Maximum Suppression (NMS). In order to achieve better grouping results, we utilize a transformer decoder to iteratively refine the point classifiers and develop a context-aware CutMix augmentation to overcome the class imbalance problem. As a result, PUPS achieves 1st place on the leader board of SemanticKITTI panoptic segmentation task and state-of-the-art results on nuScenes.</description><identifier>ISSN: 2159-5399</identifier><identifier>EISSN: 2374-3468</identifier><identifier>DOI: 10.1609/aaai.v37i2.25329</identifier><language>eng</language><ispartof>Proceedings of the ... AAAI Conference on Artificial Intelligence, 2023-06, Vol.37 (2), p.2339-2347</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c215t-158dabef61d5ff8ce0242c92a5699f5aeea0fa3a19952f251daf6692d56be6883</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Su, Shihao</creatorcontrib><creatorcontrib>Xu, Jianyun</creatorcontrib><creatorcontrib>Wang, Huanyu</creatorcontrib><creatorcontrib>Miao, Zhenwei</creatorcontrib><creatorcontrib>Zhan, Xin</creatorcontrib><creatorcontrib>Hao, Dayang</creatorcontrib><creatorcontrib>Li, Xi</creatorcontrib><title>PUPS: Point Cloud Unified Panoptic Segmentation</title><title>Proceedings of the ... AAAI Conference on Artificial Intelligence</title><description>Point cloud panoptic segmentation is a challenging task that seeks a holistic solution for both semantic and instance segmentation to predict groupings of coherent points. Previous approaches treat semantic and instance segmentation as surrogate tasks, and they either use clustering methods or bounding boxes to gather instance groupings with costly computation and hand-craft designs in the instance segmentation task. In this paper, we propose a simple but effective point cloud unified panoptic segmentation (PUPS) framework, which use a set of point-level classifiers to directly predict semantic and instance groupings in an end-to-end manner. To realize PUPS, we introduce bipartite matching to our training pipeline so that our classifiers are able to exclusively predict groupings of instances, getting rid of hand-crafted designs, e.g. anchors and Non-Maximum Suppression (NMS). In order to achieve better grouping results, we utilize a transformer decoder to iteratively refine the point classifiers and develop a context-aware CutMix augmentation to overcome the class imbalance problem. As a result, PUPS achieves 1st place on the leader board of SemanticKITTI panoptic segmentation task and state-of-the-art results on nuScenes.</description><issn>2159-5399</issn><issn>2374-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotz81qwzAQBGBRWmhIc-_RLyBHK1myt7di-geBGlKfxcaSikpiB1st9O3rpNnL7GmGj7F7EDkYgWsiivmPKqPMpVYSr9hCqrLgqjDV9fyDRq4V4i1bTdOXmK9AACgXbN20zfYha4bYp6zeD98ua_sYondZQ_1wTLHLtv7z4PtEKQ79HbsJtJ_86pJL1j4_fdSvfPP-8lY_bng3jyUOunK088GA0yFUnReykB1K0gYxaPKeRCBFgKhlkBocBWNQOm123lSVWjLx39uNwzSNPtjjGA80_loQ9mS2J7M9m-3ZrP4AUlhKrg</recordid><startdate>20230626</startdate><enddate>20230626</enddate><creator>Su, Shihao</creator><creator>Xu, Jianyun</creator><creator>Wang, Huanyu</creator><creator>Miao, Zhenwei</creator><creator>Zhan, Xin</creator><creator>Hao, Dayang</creator><creator>Li, Xi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230626</creationdate><title>PUPS: Point Cloud Unified Panoptic Segmentation</title><author>Su, Shihao ; Xu, Jianyun ; Wang, Huanyu ; Miao, Zhenwei ; Zhan, Xin ; Hao, Dayang ; Li, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c215t-158dabef61d5ff8ce0242c92a5699f5aeea0fa3a19952f251daf6692d56be6883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Su, Shihao</creatorcontrib><creatorcontrib>Xu, Jianyun</creatorcontrib><creatorcontrib>Wang, Huanyu</creatorcontrib><creatorcontrib>Miao, Zhenwei</creatorcontrib><creatorcontrib>Zhan, Xin</creatorcontrib><creatorcontrib>Hao, Dayang</creatorcontrib><creatorcontrib>Li, Xi</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the ... AAAI Conference on Artificial Intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Shihao</au><au>Xu, Jianyun</au><au>Wang, Huanyu</au><au>Miao, Zhenwei</au><au>Zhan, Xin</au><au>Hao, Dayang</au><au>Li, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PUPS: Point Cloud Unified Panoptic Segmentation</atitle><jtitle>Proceedings of the ... AAAI Conference on Artificial Intelligence</jtitle><date>2023-06-26</date><risdate>2023</risdate><volume>37</volume><issue>2</issue><spage>2339</spage><epage>2347</epage><pages>2339-2347</pages><issn>2159-5399</issn><eissn>2374-3468</eissn><abstract>Point cloud panoptic segmentation is a challenging task that seeks a holistic solution for both semantic and instance segmentation to predict groupings of coherent points. Previous approaches treat semantic and instance segmentation as surrogate tasks, and they either use clustering methods or bounding boxes to gather instance groupings with costly computation and hand-craft designs in the instance segmentation task. In this paper, we propose a simple but effective point cloud unified panoptic segmentation (PUPS) framework, which use a set of point-level classifiers to directly predict semantic and instance groupings in an end-to-end manner. To realize PUPS, we introduce bipartite matching to our training pipeline so that our classifiers are able to exclusively predict groupings of instances, getting rid of hand-crafted designs, e.g. anchors and Non-Maximum Suppression (NMS). In order to achieve better grouping results, we utilize a transformer decoder to iteratively refine the point classifiers and develop a context-aware CutMix augmentation to overcome the class imbalance problem. As a result, PUPS achieves 1st place on the leader board of SemanticKITTI panoptic segmentation task and state-of-the-art results on nuScenes.</abstract><doi>10.1609/aaai.v37i2.25329</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2159-5399 |
ispartof | Proceedings of the ... AAAI Conference on Artificial Intelligence, 2023-06, Vol.37 (2), p.2339-2347 |
issn | 2159-5399 2374-3468 |
language | eng |
recordid | cdi_crossref_primary_10_1609_aaai_v37i2_25329 |
source | Freely Accessible Science Journals - check A-Z of ejournals |
title | PUPS: Point Cloud Unified Panoptic Segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PUPS:%20Point%20Cloud%20Unified%20Panoptic%20Segmentation&rft.jtitle=Proceedings%20of%20the%20...%20AAAI%20Conference%20on%20Artificial%20Intelligence&rft.au=Su,%20Shihao&rft.date=2023-06-26&rft.volume=37&rft.issue=2&rft.spage=2339&rft.epage=2347&rft.pages=2339-2347&rft.issn=2159-5399&rft.eissn=2374-3468&rft_id=info:doi/10.1609/aaai.v37i2.25329&rft_dat=%3Ccrossref%3E10_1609_aaai_v37i2_25329%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c215t-158dabef61d5ff8ce0242c92a5699f5aeea0fa3a19952f251daf6692d56be6883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |