Loading…

PUPS: Point Cloud Unified Panoptic Segmentation

Point cloud panoptic segmentation is a challenging task that seeks a holistic solution for both semantic and instance segmentation to predict groupings of coherent points. Previous approaches treat semantic and instance segmentation as surrogate tasks, and they either use clustering methods or bound...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the ... AAAI Conference on Artificial Intelligence 2023-06, Vol.37 (2), p.2339-2347
Main Authors: Su, Shihao, Xu, Jianyun, Wang, Huanyu, Miao, Zhenwei, Zhan, Xin, Hao, Dayang, Li, Xi
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c215t-158dabef61d5ff8ce0242c92a5699f5aeea0fa3a19952f251daf6692d56be6883
cites
container_end_page 2347
container_issue 2
container_start_page 2339
container_title Proceedings of the ... AAAI Conference on Artificial Intelligence
container_volume 37
creator Su, Shihao
Xu, Jianyun
Wang, Huanyu
Miao, Zhenwei
Zhan, Xin
Hao, Dayang
Li, Xi
description Point cloud panoptic segmentation is a challenging task that seeks a holistic solution for both semantic and instance segmentation to predict groupings of coherent points. Previous approaches treat semantic and instance segmentation as surrogate tasks, and they either use clustering methods or bounding boxes to gather instance groupings with costly computation and hand-craft designs in the instance segmentation task. In this paper, we propose a simple but effective point cloud unified panoptic segmentation (PUPS) framework, which use a set of point-level classifiers to directly predict semantic and instance groupings in an end-to-end manner. To realize PUPS, we introduce bipartite matching to our training pipeline so that our classifiers are able to exclusively predict groupings of instances, getting rid of hand-crafted designs, e.g. anchors and Non-Maximum Suppression (NMS). In order to achieve better grouping results, we utilize a transformer decoder to iteratively refine the point classifiers and develop a context-aware CutMix augmentation to overcome the class imbalance problem. As a result, PUPS achieves 1st place on the leader board of SemanticKITTI panoptic segmentation task and state-of-the-art results on nuScenes.
doi_str_mv 10.1609/aaai.v37i2.25329
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1609_aaai_v37i2_25329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1609_aaai_v37i2_25329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c215t-158dabef61d5ff8ce0242c92a5699f5aeea0fa3a19952f251daf6692d56be6883</originalsourceid><addsrcrecordid>eNotz81qwzAQBGBRWmhIc-_RLyBHK1myt7di-geBGlKfxcaSikpiB1st9O3rpNnL7GmGj7F7EDkYgWsiivmPKqPMpVYSr9hCqrLgqjDV9fyDRq4V4i1bTdOXmK9AACgXbN20zfYha4bYp6zeD98ua_sYondZQ_1wTLHLtv7z4PtEKQ79HbsJtJ_86pJL1j4_fdSvfPP-8lY_bng3jyUOunK088GA0yFUnReykB1K0gYxaPKeRCBFgKhlkBocBWNQOm123lSVWjLx39uNwzSNPtjjGA80_loQ9mS2J7M9m-3ZrP4AUlhKrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PUPS: Point Cloud Unified Panoptic Segmentation</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><creator>Su, Shihao ; Xu, Jianyun ; Wang, Huanyu ; Miao, Zhenwei ; Zhan, Xin ; Hao, Dayang ; Li, Xi</creator><creatorcontrib>Su, Shihao ; Xu, Jianyun ; Wang, Huanyu ; Miao, Zhenwei ; Zhan, Xin ; Hao, Dayang ; Li, Xi</creatorcontrib><description>Point cloud panoptic segmentation is a challenging task that seeks a holistic solution for both semantic and instance segmentation to predict groupings of coherent points. Previous approaches treat semantic and instance segmentation as surrogate tasks, and they either use clustering methods or bounding boxes to gather instance groupings with costly computation and hand-craft designs in the instance segmentation task. In this paper, we propose a simple but effective point cloud unified panoptic segmentation (PUPS) framework, which use a set of point-level classifiers to directly predict semantic and instance groupings in an end-to-end manner. To realize PUPS, we introduce bipartite matching to our training pipeline so that our classifiers are able to exclusively predict groupings of instances, getting rid of hand-crafted designs, e.g. anchors and Non-Maximum Suppression (NMS). In order to achieve better grouping results, we utilize a transformer decoder to iteratively refine the point classifiers and develop a context-aware CutMix augmentation to overcome the class imbalance problem. As a result, PUPS achieves 1st place on the leader board of SemanticKITTI panoptic segmentation task and state-of-the-art results on nuScenes.</description><identifier>ISSN: 2159-5399</identifier><identifier>EISSN: 2374-3468</identifier><identifier>DOI: 10.1609/aaai.v37i2.25329</identifier><language>eng</language><ispartof>Proceedings of the ... AAAI Conference on Artificial Intelligence, 2023-06, Vol.37 (2), p.2339-2347</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c215t-158dabef61d5ff8ce0242c92a5699f5aeea0fa3a19952f251daf6692d56be6883</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Su, Shihao</creatorcontrib><creatorcontrib>Xu, Jianyun</creatorcontrib><creatorcontrib>Wang, Huanyu</creatorcontrib><creatorcontrib>Miao, Zhenwei</creatorcontrib><creatorcontrib>Zhan, Xin</creatorcontrib><creatorcontrib>Hao, Dayang</creatorcontrib><creatorcontrib>Li, Xi</creatorcontrib><title>PUPS: Point Cloud Unified Panoptic Segmentation</title><title>Proceedings of the ... AAAI Conference on Artificial Intelligence</title><description>Point cloud panoptic segmentation is a challenging task that seeks a holistic solution for both semantic and instance segmentation to predict groupings of coherent points. Previous approaches treat semantic and instance segmentation as surrogate tasks, and they either use clustering methods or bounding boxes to gather instance groupings with costly computation and hand-craft designs in the instance segmentation task. In this paper, we propose a simple but effective point cloud unified panoptic segmentation (PUPS) framework, which use a set of point-level classifiers to directly predict semantic and instance groupings in an end-to-end manner. To realize PUPS, we introduce bipartite matching to our training pipeline so that our classifiers are able to exclusively predict groupings of instances, getting rid of hand-crafted designs, e.g. anchors and Non-Maximum Suppression (NMS). In order to achieve better grouping results, we utilize a transformer decoder to iteratively refine the point classifiers and develop a context-aware CutMix augmentation to overcome the class imbalance problem. As a result, PUPS achieves 1st place on the leader board of SemanticKITTI panoptic segmentation task and state-of-the-art results on nuScenes.</description><issn>2159-5399</issn><issn>2374-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotz81qwzAQBGBRWmhIc-_RLyBHK1myt7di-geBGlKfxcaSikpiB1st9O3rpNnL7GmGj7F7EDkYgWsiivmPKqPMpVYSr9hCqrLgqjDV9fyDRq4V4i1bTdOXmK9AACgXbN20zfYha4bYp6zeD98ua_sYondZQ_1wTLHLtv7z4PtEKQ79HbsJtJ_86pJL1j4_fdSvfPP-8lY_bng3jyUOunK088GA0yFUnReykB1K0gYxaPKeRCBFgKhlkBocBWNQOm123lSVWjLx39uNwzSNPtjjGA80_loQ9mS2J7M9m-3ZrP4AUlhKrg</recordid><startdate>20230626</startdate><enddate>20230626</enddate><creator>Su, Shihao</creator><creator>Xu, Jianyun</creator><creator>Wang, Huanyu</creator><creator>Miao, Zhenwei</creator><creator>Zhan, Xin</creator><creator>Hao, Dayang</creator><creator>Li, Xi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230626</creationdate><title>PUPS: Point Cloud Unified Panoptic Segmentation</title><author>Su, Shihao ; Xu, Jianyun ; Wang, Huanyu ; Miao, Zhenwei ; Zhan, Xin ; Hao, Dayang ; Li, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c215t-158dabef61d5ff8ce0242c92a5699f5aeea0fa3a19952f251daf6692d56be6883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Su, Shihao</creatorcontrib><creatorcontrib>Xu, Jianyun</creatorcontrib><creatorcontrib>Wang, Huanyu</creatorcontrib><creatorcontrib>Miao, Zhenwei</creatorcontrib><creatorcontrib>Zhan, Xin</creatorcontrib><creatorcontrib>Hao, Dayang</creatorcontrib><creatorcontrib>Li, Xi</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the ... AAAI Conference on Artificial Intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Shihao</au><au>Xu, Jianyun</au><au>Wang, Huanyu</au><au>Miao, Zhenwei</au><au>Zhan, Xin</au><au>Hao, Dayang</au><au>Li, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PUPS: Point Cloud Unified Panoptic Segmentation</atitle><jtitle>Proceedings of the ... AAAI Conference on Artificial Intelligence</jtitle><date>2023-06-26</date><risdate>2023</risdate><volume>37</volume><issue>2</issue><spage>2339</spage><epage>2347</epage><pages>2339-2347</pages><issn>2159-5399</issn><eissn>2374-3468</eissn><abstract>Point cloud panoptic segmentation is a challenging task that seeks a holistic solution for both semantic and instance segmentation to predict groupings of coherent points. Previous approaches treat semantic and instance segmentation as surrogate tasks, and they either use clustering methods or bounding boxes to gather instance groupings with costly computation and hand-craft designs in the instance segmentation task. In this paper, we propose a simple but effective point cloud unified panoptic segmentation (PUPS) framework, which use a set of point-level classifiers to directly predict semantic and instance groupings in an end-to-end manner. To realize PUPS, we introduce bipartite matching to our training pipeline so that our classifiers are able to exclusively predict groupings of instances, getting rid of hand-crafted designs, e.g. anchors and Non-Maximum Suppression (NMS). In order to achieve better grouping results, we utilize a transformer decoder to iteratively refine the point classifiers and develop a context-aware CutMix augmentation to overcome the class imbalance problem. As a result, PUPS achieves 1st place on the leader board of SemanticKITTI panoptic segmentation task and state-of-the-art results on nuScenes.</abstract><doi>10.1609/aaai.v37i2.25329</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2159-5399
ispartof Proceedings of the ... AAAI Conference on Artificial Intelligence, 2023-06, Vol.37 (2), p.2339-2347
issn 2159-5399
2374-3468
language eng
recordid cdi_crossref_primary_10_1609_aaai_v37i2_25329
source Freely Accessible Science Journals - check A-Z of ejournals
title PUPS: Point Cloud Unified Panoptic Segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PUPS:%20Point%20Cloud%20Unified%20Panoptic%20Segmentation&rft.jtitle=Proceedings%20of%20the%20...%20AAAI%20Conference%20on%20Artificial%20Intelligence&rft.au=Su,%20Shihao&rft.date=2023-06-26&rft.volume=37&rft.issue=2&rft.spage=2339&rft.epage=2347&rft.pages=2339-2347&rft.issn=2159-5399&rft.eissn=2374-3468&rft_id=info:doi/10.1609/aaai.v37i2.25329&rft_dat=%3Ccrossref%3E10_1609_aaai_v37i2_25329%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c215t-158dabef61d5ff8ce0242c92a5699f5aeea0fa3a19952f251daf6692d56be6883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true