Loading…
Automatic Radiology Reports Generation via Memory Alignment Network
The automatic generation of radiology reports is of great significance, which can reduce the workload of doctors and improve the accuracy and reliability of medical diagnosis and treatment, and has attracted wide attention in recent years. Cross-modal mapping between images and text, a key component...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The automatic generation of radiology reports is of great significance, which can reduce the workload of doctors and improve the accuracy and reliability of medical diagnosis and treatment, and has attracted wide attention in recent years. Cross-modal mapping between images and text, a key component of generating high-quality reports, is challenging due to the lack of corresponding annotations. Despite its importance, previous studies have often overlooked it or lacked adequate designs for this crucial component. In this paper, we propose a method with memory alignment embedding to assist the model in aligning visual and textual features to generate a coherent and informative report. Specifically, we first get the memory alignment embedding by querying the memory matrix, where the query is derived from a combination of the visual features and their corresponding positional embeddings. Then the alignment between the visual and textual features can be guided by the memory alignment embedding during the generation process. The comparison experiments with other alignment methods show that the proposed alignment method is less costly and more effective. The proposed approach achieves better performance than state-of-the-art approaches on two public datasets IU X-Ray and MIMIC-CXR, which further demonstrates the effectiveness of the proposed alignment method. |
---|---|
ISSN: | 2159-5399 2374-3468 |
DOI: | 10.1609/aaai.v38i5.28279 |