Loading…

DeepAccident: A Motion and Accident Prediction Benchmark for V2X Autonomous Driving

Safety is the primary priority of autonomous driving. Nevertheless, no published dataset currently supports the direct and explainable safety evaluation for autonomous driving. In this work, we propose DeepAccident, a large-scale dataset generated via a realistic simulator containing diverse acciden...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Tianqi, Kim, Sukmin, Wenxuan, Ji, Xie, Enze, Ge, Chongjian, Chen, Junsong, Li, Zhenguo, Luo, Ping
Format: Conference Proceeding
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c243t-dc4ffa8d17a46531711a76a2e37893e1e082f2d4301c7b18aa64d8121c3c70d93
cites
container_end_page 5606
container_issue 6
container_start_page 5599
container_title
container_volume 38
creator Wang, Tianqi
Kim, Sukmin
Wenxuan, Ji
Xie, Enze
Ge, Chongjian
Chen, Junsong
Li, Zhenguo
Luo, Ping
description Safety is the primary priority of autonomous driving. Nevertheless, no published dataset currently supports the direct and explainable safety evaluation for autonomous driving. In this work, we propose DeepAccident, a large-scale dataset generated via a realistic simulator containing diverse accident scenarios that frequently occur in real-world driving. The proposed DeepAccident dataset includes 57K annotated frames and 285K annotated samples, approximately 7 times more than the large-scale nuScenes dataset with 40k annotated samples. In addition, we propose a new task, end-to-end motion and accident prediction, which can be used to directly evaluate the accident prediction ability for different autonomous driving algorithms. Furthermore, for each scenario, we set four vehicles along with one infrastructure to record data, thus providing diverse viewpoints for accident scenarios and enabling V2X (vehicle-to-everything) research on perception and prediction tasks. Finally, we present a baseline V2X model named V2XFormer that demonstrates superior performance for motion and accident prediction and 3D object detection compared to the single-vehicle model.
doi_str_mv 10.1609/aaai.v38i6.28370
format conference_proceeding
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1609_aaai_v38i6_28370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1609_aaai_v38i6_28370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-dc4ffa8d17a46531711a76a2e37893e1e082f2d4301c7b18aa64d8121c3c70d93</originalsourceid><addsrcrecordid>eNo1kMtOwzAURC0EElXpnqV_IMHX14ltdqGFglQEEg-xi4ztgIHGlZNW4u9JA8xmRrMYjQ4hp8ByKJk-M8aEfIcqlDlXKNkBmXCUIkNRqsMhQ6GzArU-JrOu-2CDhAYAOSEPC-83lbXB-bY_pxW9jX2ILTWto_81vU_eBTv2F76172uTPmkTE33mL7Ta9rGN67jt6CKFXWjfTshRY746P_vzKXm6unycX2eru-XNvFpllgvsM2dF0xjlQBpRFggSwMjScI9SafTgmeINdwIZWPkKyphSOAUcLFrJnMYpYb-7NsWuS76pNykM375rYPWeS73nUo9c6pEL_gAQyVac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>DeepAccident: A Motion and Accident Prediction Benchmark for V2X Autonomous Driving</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><creator>Wang, Tianqi ; Kim, Sukmin ; Wenxuan, Ji ; Xie, Enze ; Ge, Chongjian ; Chen, Junsong ; Li, Zhenguo ; Luo, Ping</creator><creatorcontrib>Wang, Tianqi ; Kim, Sukmin ; Wenxuan, Ji ; Xie, Enze ; Ge, Chongjian ; Chen, Junsong ; Li, Zhenguo ; Luo, Ping</creatorcontrib><description>Safety is the primary priority of autonomous driving. Nevertheless, no published dataset currently supports the direct and explainable safety evaluation for autonomous driving. In this work, we propose DeepAccident, a large-scale dataset generated via a realistic simulator containing diverse accident scenarios that frequently occur in real-world driving. The proposed DeepAccident dataset includes 57K annotated frames and 285K annotated samples, approximately 7 times more than the large-scale nuScenes dataset with 40k annotated samples. In addition, we propose a new task, end-to-end motion and accident prediction, which can be used to directly evaluate the accident prediction ability for different autonomous driving algorithms. Furthermore, for each scenario, we set four vehicles along with one infrastructure to record data, thus providing diverse viewpoints for accident scenarios and enabling V2X (vehicle-to-everything) research on perception and prediction tasks. Finally, we present a baseline V2X model named V2XFormer that demonstrates superior performance for motion and accident prediction and 3D object detection compared to the single-vehicle model.</description><identifier>ISSN: 2159-5399</identifier><identifier>EISSN: 2374-3468</identifier><identifier>DOI: 10.1609/aaai.v38i6.28370</identifier><language>eng</language><ispartof>Proceedings of the ... AAAI Conference on Artificial Intelligence, 2024, Vol.38 (6), p.5599-5606</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-dc4ffa8d17a46531711a76a2e37893e1e082f2d4301c7b18aa64d8121c3c70d93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Wang, Tianqi</creatorcontrib><creatorcontrib>Kim, Sukmin</creatorcontrib><creatorcontrib>Wenxuan, Ji</creatorcontrib><creatorcontrib>Xie, Enze</creatorcontrib><creatorcontrib>Ge, Chongjian</creatorcontrib><creatorcontrib>Chen, Junsong</creatorcontrib><creatorcontrib>Li, Zhenguo</creatorcontrib><creatorcontrib>Luo, Ping</creatorcontrib><title>DeepAccident: A Motion and Accident Prediction Benchmark for V2X Autonomous Driving</title><title>Proceedings of the ... AAAI Conference on Artificial Intelligence</title><description>Safety is the primary priority of autonomous driving. Nevertheless, no published dataset currently supports the direct and explainable safety evaluation for autonomous driving. In this work, we propose DeepAccident, a large-scale dataset generated via a realistic simulator containing diverse accident scenarios that frequently occur in real-world driving. The proposed DeepAccident dataset includes 57K annotated frames and 285K annotated samples, approximately 7 times more than the large-scale nuScenes dataset with 40k annotated samples. In addition, we propose a new task, end-to-end motion and accident prediction, which can be used to directly evaluate the accident prediction ability for different autonomous driving algorithms. Furthermore, for each scenario, we set four vehicles along with one infrastructure to record data, thus providing diverse viewpoints for accident scenarios and enabling V2X (vehicle-to-everything) research on perception and prediction tasks. Finally, we present a baseline V2X model named V2XFormer that demonstrates superior performance for motion and accident prediction and 3D object detection compared to the single-vehicle model.</description><issn>2159-5399</issn><issn>2374-3468</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo1kMtOwzAURC0EElXpnqV_IMHX14ltdqGFglQEEg-xi4ztgIHGlZNW4u9JA8xmRrMYjQ4hp8ByKJk-M8aEfIcqlDlXKNkBmXCUIkNRqsMhQ6GzArU-JrOu-2CDhAYAOSEPC-83lbXB-bY_pxW9jX2ILTWto_81vU_eBTv2F76172uTPmkTE33mL7Ta9rGN67jt6CKFXWjfTshRY746P_vzKXm6unycX2eru-XNvFpllgvsM2dF0xjlQBpRFggSwMjScI9SafTgmeINdwIZWPkKyphSOAUcLFrJnMYpYb-7NsWuS76pNykM375rYPWeS73nUo9c6pEL_gAQyVac</recordid><startdate>20240325</startdate><enddate>20240325</enddate><creator>Wang, Tianqi</creator><creator>Kim, Sukmin</creator><creator>Wenxuan, Ji</creator><creator>Xie, Enze</creator><creator>Ge, Chongjian</creator><creator>Chen, Junsong</creator><creator>Li, Zhenguo</creator><creator>Luo, Ping</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240325</creationdate><title>DeepAccident: A Motion and Accident Prediction Benchmark for V2X Autonomous Driving</title><author>Wang, Tianqi ; Kim, Sukmin ; Wenxuan, Ji ; Xie, Enze ; Ge, Chongjian ; Chen, Junsong ; Li, Zhenguo ; Luo, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-dc4ffa8d17a46531711a76a2e37893e1e082f2d4301c7b18aa64d8121c3c70d93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tianqi</creatorcontrib><creatorcontrib>Kim, Sukmin</creatorcontrib><creatorcontrib>Wenxuan, Ji</creatorcontrib><creatorcontrib>Xie, Enze</creatorcontrib><creatorcontrib>Ge, Chongjian</creatorcontrib><creatorcontrib>Chen, Junsong</creatorcontrib><creatorcontrib>Li, Zhenguo</creatorcontrib><creatorcontrib>Luo, Ping</creatorcontrib><collection>CrossRef</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tianqi</au><au>Kim, Sukmin</au><au>Wenxuan, Ji</au><au>Xie, Enze</au><au>Ge, Chongjian</au><au>Chen, Junsong</au><au>Li, Zhenguo</au><au>Luo, Ping</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>DeepAccident: A Motion and Accident Prediction Benchmark for V2X Autonomous Driving</atitle><btitle>Proceedings of the ... AAAI Conference on Artificial Intelligence</btitle><date>2024-03-25</date><risdate>2024</risdate><volume>38</volume><issue>6</issue><spage>5599</spage><epage>5606</epage><pages>5599-5606</pages><issn>2159-5399</issn><eissn>2374-3468</eissn><abstract>Safety is the primary priority of autonomous driving. Nevertheless, no published dataset currently supports the direct and explainable safety evaluation for autonomous driving. In this work, we propose DeepAccident, a large-scale dataset generated via a realistic simulator containing diverse accident scenarios that frequently occur in real-world driving. The proposed DeepAccident dataset includes 57K annotated frames and 285K annotated samples, approximately 7 times more than the large-scale nuScenes dataset with 40k annotated samples. In addition, we propose a new task, end-to-end motion and accident prediction, which can be used to directly evaluate the accident prediction ability for different autonomous driving algorithms. Furthermore, for each scenario, we set four vehicles along with one infrastructure to record data, thus providing diverse viewpoints for accident scenarios and enabling V2X (vehicle-to-everything) research on perception and prediction tasks. Finally, we present a baseline V2X model named V2XFormer that demonstrates superior performance for motion and accident prediction and 3D object detection compared to the single-vehicle model.</abstract><doi>10.1609/aaai.v38i6.28370</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2159-5399
ispartof Proceedings of the ... AAAI Conference on Artificial Intelligence, 2024, Vol.38 (6), p.5599-5606
issn 2159-5399
2374-3468
language eng
recordid cdi_crossref_primary_10_1609_aaai_v38i6_28370
source Freely Accessible Science Journals - check A-Z of ejournals
title DeepAccident: A Motion and Accident Prediction Benchmark for V2X Autonomous Driving
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T21%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=DeepAccident:%20A%20Motion%20and%20Accident%20Prediction%20Benchmark%20for%20V2X%20Autonomous%20Driving&rft.btitle=Proceedings%20of%20the%20...%20AAAI%20Conference%20on%20Artificial%20Intelligence&rft.au=Wang,%20Tianqi&rft.date=2024-03-25&rft.volume=38&rft.issue=6&rft.spage=5599&rft.epage=5606&rft.pages=5599-5606&rft.issn=2159-5399&rft.eissn=2374-3468&rft_id=info:doi/10.1609/aaai.v38i6.28370&rft_dat=%3Ccrossref%3E10_1609_aaai_v38i6_28370%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c243t-dc4ffa8d17a46531711a76a2e37893e1e082f2d4301c7b18aa64d8121c3c70d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true