Loading…

Glyphosate-resistant wheat persistence in western Canadian cropping systems

As a weed, wheat has recently gained greater profile. Determining wheat persistence in cropping systems will facilitate the development of effective volunteer wheat management strategies. In October of 2000, glyphosate-resistant (GR) spring wheat seeds were scattered on plots at eight western Canada...

Full description

Saved in:
Bibliographic Details
Published in:Weed science 2005-11, Vol.53 (6), p.846-859
Main Authors: Harker, K. Neil, Clayton, George W., Blackshaw, Robert E., O'Donovan, John T., Johnson, Eric N., Gan, Yantai, Holm, Frederick A., Sapsford, Ken L., Irvine, R. Byron, Van Acker, Rene C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a weed, wheat has recently gained greater profile. Determining wheat persistence in cropping systems will facilitate the development of effective volunteer wheat management strategies. In October of 2000, glyphosate-resistant (GR) spring wheat seeds were scattered on plots at eight western Canada sites. From 2001 to 2003, the plots were seeded to a canola–barley–field-pea rotation or a fallow–barley–fallow rotation, with five seeding systems involving seeding dates and soil disturbance levels, and monitored for wheat plant density. Herbicides and tillage (in fallow systems) were used to ensure that no wheat plants produced seed. Seeding systems with greater levels of soil disturbance usually had greater wheat densities. Volunteer wheat densities at 2 (2002) and 3 (2003) yr after seed dispersal were close to zero but still detectable at most locations. At the end of 2003, viable wheat seeds were not detected in the soil seed bank at any location. The majority of wheat seedlings were recruited in the year following seed dispersal (2001) at the in-crop, prespray (PRES) interval. At the PRES interval in 2001, across all locations and treatments, wheat density averaged 2.6 plants m−2. At the preplanting interval (PREP), overall wheat density averaged only 0.2 plants m−2. By restricting density data to include only continuous cropping, low-disturbance direct-seeding (LDS) systems, the latter mean dropped below 0.1 plants m−2. Only at one site were preplanting GR wheat densities sufficient (4.2 plants m−2) to justify a preseeding herbicide treatment in addition to glyphosate in LDS systems. Overall volunteer wheat recruitment at all spring and summer intervals in the continuous cropping rotation in 2001 was 1.7% (3.3 plants m−2). Despite the fact that volunteer wheat has become more common in the central and northern Great Plains, there is little evidence from this study to suggest that its persistence will be a major agronomic problem. Nomenclature: Barley, Hordeum vulgare L.; canola, Brassica napus L.; field pea, Pisum sativum L.; spring wheat, Triticum aestivum L.
ISSN:0043-1745
1550-2759
DOI:10.1614/WS-05-068R1.1