Loading…

Analysis of synergistic and antagonistic effects of herbicides using nonlinear mixed-model methodology

When herbicides are applied in mixture, and infestation by weeds is less than expected compared with when herbicides are applied alone, a synergistic effect is said to exist. The inverse response is described as being antagonistic. However, if the expected response is defined as a multiplicative, no...

Full description

Saved in:
Bibliographic Details
Published in:Weed technology 2004-04, Vol.18 (2), p.464-472
Main Authors: Blouin, D.C, Webster, E.P, Zhang, W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c308t-19b910af6d9185b1b53fed9c3860517363523b5082a260c164d831c7f3388ea23
cites cdi_FETCH-LOGICAL-c308t-19b910af6d9185b1b53fed9c3860517363523b5082a260c164d831c7f3388ea23
container_end_page 472
container_issue 2
container_start_page 464
container_title Weed technology
container_volume 18
creator Blouin, D.C
Webster, E.P
Zhang, W
description When herbicides are applied in mixture, and infestation by weeds is less than expected compared with when herbicides are applied alone, a synergistic effect is said to exist. The inverse response is described as being antagonistic. However, if the expected response is defined as a multiplicative, nonlinear function of the means for the herbicides when applied alone, then standard linear model methodology for tests of hypotheses does not apply directly. Consequently, nonlinear mixed-model methodology was explored using the nonlinear mixed-model procedure (PROC NLMIXED) of SAS System. Generality of the methodology is illustrated using data from a randomized block design with repeated measures in time. Nonlinear mixed-model estimates and tests of synergistic and antagonistic effects were more sensitive in detecting significance, and PROC NLMIXED was a versatile tool for implementation.
doi_str_mv 10.1614/WT-03-047R1
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1614_WT_03_047R1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3989243</jstor_id><sourcerecordid>3989243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-19b910af6d9185b1b53fed9c3860517363523b5082a260c164d831c7f3388ea23</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouK6evAr24kmqk6RN0-Oy-AWCoLust5Lmo5ulmyxJBfvv7W5FDzMD8zzzHgahSwx3mOHsfrVIgaaQFe_4CE1wnkNKigyO0QR4CQMrPk_RWYwbAMwIgQkyMyfaPtqYeJPE3unQ2NhZmQinhupE49240MZo2R28tQ61lVbpmHxF65rEeddap0VItvZbq3TrlW6Tre7WXvnWN_05OjGijfrid07R8vFhMX9OX9-eXuaz11RS4F2Ky7rEIAxTJeZ5jeucGq1KSTmDHBeU0ZzQOgdOBGEgMcsUp1gWhlLOtSB0im7HXBl8jEGbahfsVoS-wlDtX1StFhXQ6vCiwb4Z7Z2IUrQmCCdt_D9hZVYUOR-8q9HbxM6HP05LXpKMDvh6xEb4SjRhiFh-EMAU8L4xQn8Aajx51Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of synergistic and antagonistic effects of herbicides using nonlinear mixed-model methodology</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Blouin, D.C ; Webster, E.P ; Zhang, W</creator><creatorcontrib>Blouin, D.C ; Webster, E.P ; Zhang, W</creatorcontrib><description>When herbicides are applied in mixture, and infestation by weeds is less than expected compared with when herbicides are applied alone, a synergistic effect is said to exist. The inverse response is described as being antagonistic. However, if the expected response is defined as a multiplicative, nonlinear function of the means for the herbicides when applied alone, then standard linear model methodology for tests of hypotheses does not apply directly. Consequently, nonlinear mixed-model methodology was explored using the nonlinear mixed-model procedure (PROC NLMIXED) of SAS System. Generality of the methodology is illustrated using data from a randomized block design with repeated measures in time. Nonlinear mixed-model estimates and tests of synergistic and antagonistic effects were more sensitive in detecting significance, and PROC NLMIXED was a versatile tool for implementation.</description><identifier>ISSN: 0890-037X</identifier><identifier>EISSN: 1550-2740</identifier><identifier>DOI: 10.1614/WT-03-047R1</identifier><identifier>CODEN: WETEE9</identifier><language>eng</language><publisher>Lawrence, KS: Weed Science Society of America</publisher><subject>Analytical estimating ; antagonists ; Biological and medical sciences ; Chemical control ; Datasets ; Education/Extension ; Estimation methods ; Fundamental and applied biological sciences. Psychology ; Graph theory ; Herbicides ; Infestation ; mathematical models ; Modeling ; Parasitic plants. Weeds ; Phytopathology. Animal pests. Plant and forest protection ; Standard error ; Statistical variance ; synergism ; T tests ; Weeds</subject><ispartof>Weed technology, 2004-04, Vol.18 (2), p.464-472</ispartof><rights>Copyright 2004 The Weed Science Society of America</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-19b910af6d9185b1b53fed9c3860517363523b5082a260c164d831c7f3388ea23</citedby><cites>FETCH-LOGICAL-c308t-19b910af6d9185b1b53fed9c3860517363523b5082a260c164d831c7f3388ea23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3989243$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3989243$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,58236,58469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16947758$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Blouin, D.C</creatorcontrib><creatorcontrib>Webster, E.P</creatorcontrib><creatorcontrib>Zhang, W</creatorcontrib><title>Analysis of synergistic and antagonistic effects of herbicides using nonlinear mixed-model methodology</title><title>Weed technology</title><description>When herbicides are applied in mixture, and infestation by weeds is less than expected compared with when herbicides are applied alone, a synergistic effect is said to exist. The inverse response is described as being antagonistic. However, if the expected response is defined as a multiplicative, nonlinear function of the means for the herbicides when applied alone, then standard linear model methodology for tests of hypotheses does not apply directly. Consequently, nonlinear mixed-model methodology was explored using the nonlinear mixed-model procedure (PROC NLMIXED) of SAS System. Generality of the methodology is illustrated using data from a randomized block design with repeated measures in time. Nonlinear mixed-model estimates and tests of synergistic and antagonistic effects were more sensitive in detecting significance, and PROC NLMIXED was a versatile tool for implementation.</description><subject>Analytical estimating</subject><subject>antagonists</subject><subject>Biological and medical sciences</subject><subject>Chemical control</subject><subject>Datasets</subject><subject>Education/Extension</subject><subject>Estimation methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Graph theory</subject><subject>Herbicides</subject><subject>Infestation</subject><subject>mathematical models</subject><subject>Modeling</subject><subject>Parasitic plants. Weeds</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>Standard error</subject><subject>Statistical variance</subject><subject>synergism</subject><subject>T tests</subject><subject>Weeds</subject><issn>0890-037X</issn><issn>1550-2740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LxDAQhoMouK6evAr24kmqk6RN0-Oy-AWCoLust5Lmo5ulmyxJBfvv7W5FDzMD8zzzHgahSwx3mOHsfrVIgaaQFe_4CE1wnkNKigyO0QR4CQMrPk_RWYwbAMwIgQkyMyfaPtqYeJPE3unQ2NhZmQinhupE49240MZo2R28tQ61lVbpmHxF65rEeddap0VItvZbq3TrlW6Tre7WXvnWN_05OjGijfrid07R8vFhMX9OX9-eXuaz11RS4F2Ky7rEIAxTJeZ5jeucGq1KSTmDHBeU0ZzQOgdOBGEgMcsUp1gWhlLOtSB0im7HXBl8jEGbahfsVoS-wlDtX1StFhXQ6vCiwb4Z7Z2IUrQmCCdt_D9hZVYUOR-8q9HbxM6HP05LXpKMDvh6xEb4SjRhiFh-EMAU8L4xQn8Aajx51Q</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Blouin, D.C</creator><creator>Webster, E.P</creator><creator>Zhang, W</creator><general>Weed Science Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040401</creationdate><title>Analysis of synergistic and antagonistic effects of herbicides using nonlinear mixed-model methodology</title><author>Blouin, D.C ; Webster, E.P ; Zhang, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-19b910af6d9185b1b53fed9c3860517363523b5082a260c164d831c7f3388ea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analytical estimating</topic><topic>antagonists</topic><topic>Biological and medical sciences</topic><topic>Chemical control</topic><topic>Datasets</topic><topic>Education/Extension</topic><topic>Estimation methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Graph theory</topic><topic>Herbicides</topic><topic>Infestation</topic><topic>mathematical models</topic><topic>Modeling</topic><topic>Parasitic plants. Weeds</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>Standard error</topic><topic>Statistical variance</topic><topic>synergism</topic><topic>T tests</topic><topic>Weeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blouin, D.C</creatorcontrib><creatorcontrib>Webster, E.P</creatorcontrib><creatorcontrib>Zhang, W</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Weed technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blouin, D.C</au><au>Webster, E.P</au><au>Zhang, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of synergistic and antagonistic effects of herbicides using nonlinear mixed-model methodology</atitle><jtitle>Weed technology</jtitle><date>2004-04-01</date><risdate>2004</risdate><volume>18</volume><issue>2</issue><spage>464</spage><epage>472</epage><pages>464-472</pages><issn>0890-037X</issn><eissn>1550-2740</eissn><coden>WETEE9</coden><abstract>When herbicides are applied in mixture, and infestation by weeds is less than expected compared with when herbicides are applied alone, a synergistic effect is said to exist. The inverse response is described as being antagonistic. However, if the expected response is defined as a multiplicative, nonlinear function of the means for the herbicides when applied alone, then standard linear model methodology for tests of hypotheses does not apply directly. Consequently, nonlinear mixed-model methodology was explored using the nonlinear mixed-model procedure (PROC NLMIXED) of SAS System. Generality of the methodology is illustrated using data from a randomized block design with repeated measures in time. Nonlinear mixed-model estimates and tests of synergistic and antagonistic effects were more sensitive in detecting significance, and PROC NLMIXED was a versatile tool for implementation.</abstract><cop>Lawrence, KS</cop><pub>Weed Science Society of America</pub><doi>10.1614/WT-03-047R1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0890-037X
ispartof Weed technology, 2004-04, Vol.18 (2), p.464-472
issn 0890-037X
1550-2740
language eng
recordid cdi_crossref_primary_10_1614_WT_03_047R1
source JSTOR Archival Journals and Primary Sources Collection
subjects Analytical estimating
antagonists
Biological and medical sciences
Chemical control
Datasets
Education/Extension
Estimation methods
Fundamental and applied biological sciences. Psychology
Graph theory
Herbicides
Infestation
mathematical models
Modeling
Parasitic plants. Weeds
Phytopathology. Animal pests. Plant and forest protection
Standard error
Statistical variance
synergism
T tests
Weeds
title Analysis of synergistic and antagonistic effects of herbicides using nonlinear mixed-model methodology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20synergistic%20and%20antagonistic%20effects%20of%20herbicides%20using%20nonlinear%20mixed-model%20methodology&rft.jtitle=Weed%20technology&rft.au=Blouin,%20D.C&rft.date=2004-04-01&rft.volume=18&rft.issue=2&rft.spage=464&rft.epage=472&rft.pages=464-472&rft.issn=0890-037X&rft.eissn=1550-2740&rft.coden=WETEE9&rft_id=info:doi/10.1614/WT-03-047R1&rft_dat=%3Cjstor_cross%3E3989243%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-19b910af6d9185b1b53fed9c3860517363523b5082a260c164d831c7f3388ea23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3989243&rfr_iscdi=true