Loading…
Analysis of synergistic and antagonistic effects of herbicides using nonlinear mixed-model methodology
When herbicides are applied in mixture, and infestation by weeds is less than expected compared with when herbicides are applied alone, a synergistic effect is said to exist. The inverse response is described as being antagonistic. However, if the expected response is defined as a multiplicative, no...
Saved in:
Published in: | Weed technology 2004-04, Vol.18 (2), p.464-472 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c308t-19b910af6d9185b1b53fed9c3860517363523b5082a260c164d831c7f3388ea23 |
---|---|
cites | cdi_FETCH-LOGICAL-c308t-19b910af6d9185b1b53fed9c3860517363523b5082a260c164d831c7f3388ea23 |
container_end_page | 472 |
container_issue | 2 |
container_start_page | 464 |
container_title | Weed technology |
container_volume | 18 |
creator | Blouin, D.C Webster, E.P Zhang, W |
description | When herbicides are applied in mixture, and infestation by weeds is less than expected compared with when herbicides are applied alone, a synergistic effect is said to exist. The inverse response is described as being antagonistic. However, if the expected response is defined as a multiplicative, nonlinear function of the means for the herbicides when applied alone, then standard linear model methodology for tests of hypotheses does not apply directly. Consequently, nonlinear mixed-model methodology was explored using the nonlinear mixed-model procedure (PROC NLMIXED) of SAS System. Generality of the methodology is illustrated using data from a randomized block design with repeated measures in time. Nonlinear mixed-model estimates and tests of synergistic and antagonistic effects were more sensitive in detecting significance, and PROC NLMIXED was a versatile tool for implementation. |
doi_str_mv | 10.1614/WT-03-047R1 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1614_WT_03_047R1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3989243</jstor_id><sourcerecordid>3989243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-19b910af6d9185b1b53fed9c3860517363523b5082a260c164d831c7f3388ea23</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouK6evAr24kmqk6RN0-Oy-AWCoLust5Lmo5ulmyxJBfvv7W5FDzMD8zzzHgahSwx3mOHsfrVIgaaQFe_4CE1wnkNKigyO0QR4CQMrPk_RWYwbAMwIgQkyMyfaPtqYeJPE3unQ2NhZmQinhupE49240MZo2R28tQ61lVbpmHxF65rEeddap0VItvZbq3TrlW6Tre7WXvnWN_05OjGijfrid07R8vFhMX9OX9-eXuaz11RS4F2Ky7rEIAxTJeZ5jeucGq1KSTmDHBeU0ZzQOgdOBGEgMcsUp1gWhlLOtSB0im7HXBl8jEGbahfsVoS-wlDtX1StFhXQ6vCiwb4Z7Z2IUrQmCCdt_D9hZVYUOR-8q9HbxM6HP05LXpKMDvh6xEb4SjRhiFh-EMAU8L4xQn8Aajx51Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of synergistic and antagonistic effects of herbicides using nonlinear mixed-model methodology</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Blouin, D.C ; Webster, E.P ; Zhang, W</creator><creatorcontrib>Blouin, D.C ; Webster, E.P ; Zhang, W</creatorcontrib><description>When herbicides are applied in mixture, and infestation by weeds is less than expected compared with when herbicides are applied alone, a synergistic effect is said to exist. The inverse response is described as being antagonistic. However, if the expected response is defined as a multiplicative, nonlinear function of the means for the herbicides when applied alone, then standard linear model methodology for tests of hypotheses does not apply directly. Consequently, nonlinear mixed-model methodology was explored using the nonlinear mixed-model procedure (PROC NLMIXED) of SAS System. Generality of the methodology is illustrated using data from a randomized block design with repeated measures in time. Nonlinear mixed-model estimates and tests of synergistic and antagonistic effects were more sensitive in detecting significance, and PROC NLMIXED was a versatile tool for implementation.</description><identifier>ISSN: 0890-037X</identifier><identifier>EISSN: 1550-2740</identifier><identifier>DOI: 10.1614/WT-03-047R1</identifier><identifier>CODEN: WETEE9</identifier><language>eng</language><publisher>Lawrence, KS: Weed Science Society of America</publisher><subject>Analytical estimating ; antagonists ; Biological and medical sciences ; Chemical control ; Datasets ; Education/Extension ; Estimation methods ; Fundamental and applied biological sciences. Psychology ; Graph theory ; Herbicides ; Infestation ; mathematical models ; Modeling ; Parasitic plants. Weeds ; Phytopathology. Animal pests. Plant and forest protection ; Standard error ; Statistical variance ; synergism ; T tests ; Weeds</subject><ispartof>Weed technology, 2004-04, Vol.18 (2), p.464-472</ispartof><rights>Copyright 2004 The Weed Science Society of America</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-19b910af6d9185b1b53fed9c3860517363523b5082a260c164d831c7f3388ea23</citedby><cites>FETCH-LOGICAL-c308t-19b910af6d9185b1b53fed9c3860517363523b5082a260c164d831c7f3388ea23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3989243$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3989243$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,58236,58469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16947758$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Blouin, D.C</creatorcontrib><creatorcontrib>Webster, E.P</creatorcontrib><creatorcontrib>Zhang, W</creatorcontrib><title>Analysis of synergistic and antagonistic effects of herbicides using nonlinear mixed-model methodology</title><title>Weed technology</title><description>When herbicides are applied in mixture, and infestation by weeds is less than expected compared with when herbicides are applied alone, a synergistic effect is said to exist. The inverse response is described as being antagonistic. However, if the expected response is defined as a multiplicative, nonlinear function of the means for the herbicides when applied alone, then standard linear model methodology for tests of hypotheses does not apply directly. Consequently, nonlinear mixed-model methodology was explored using the nonlinear mixed-model procedure (PROC NLMIXED) of SAS System. Generality of the methodology is illustrated using data from a randomized block design with repeated measures in time. Nonlinear mixed-model estimates and tests of synergistic and antagonistic effects were more sensitive in detecting significance, and PROC NLMIXED was a versatile tool for implementation.</description><subject>Analytical estimating</subject><subject>antagonists</subject><subject>Biological and medical sciences</subject><subject>Chemical control</subject><subject>Datasets</subject><subject>Education/Extension</subject><subject>Estimation methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Graph theory</subject><subject>Herbicides</subject><subject>Infestation</subject><subject>mathematical models</subject><subject>Modeling</subject><subject>Parasitic plants. Weeds</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>Standard error</subject><subject>Statistical variance</subject><subject>synergism</subject><subject>T tests</subject><subject>Weeds</subject><issn>0890-037X</issn><issn>1550-2740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LxDAQhoMouK6evAr24kmqk6RN0-Oy-AWCoLust5Lmo5ulmyxJBfvv7W5FDzMD8zzzHgahSwx3mOHsfrVIgaaQFe_4CE1wnkNKigyO0QR4CQMrPk_RWYwbAMwIgQkyMyfaPtqYeJPE3unQ2NhZmQinhupE49240MZo2R28tQ61lVbpmHxF65rEeddap0VItvZbq3TrlW6Tre7WXvnWN_05OjGijfrid07R8vFhMX9OX9-eXuaz11RS4F2Ky7rEIAxTJeZ5jeucGq1KSTmDHBeU0ZzQOgdOBGEgMcsUp1gWhlLOtSB0im7HXBl8jEGbahfsVoS-wlDtX1StFhXQ6vCiwb4Z7Z2IUrQmCCdt_D9hZVYUOR-8q9HbxM6HP05LXpKMDvh6xEb4SjRhiFh-EMAU8L4xQn8Aajx51Q</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Blouin, D.C</creator><creator>Webster, E.P</creator><creator>Zhang, W</creator><general>Weed Science Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040401</creationdate><title>Analysis of synergistic and antagonistic effects of herbicides using nonlinear mixed-model methodology</title><author>Blouin, D.C ; Webster, E.P ; Zhang, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-19b910af6d9185b1b53fed9c3860517363523b5082a260c164d831c7f3388ea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analytical estimating</topic><topic>antagonists</topic><topic>Biological and medical sciences</topic><topic>Chemical control</topic><topic>Datasets</topic><topic>Education/Extension</topic><topic>Estimation methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Graph theory</topic><topic>Herbicides</topic><topic>Infestation</topic><topic>mathematical models</topic><topic>Modeling</topic><topic>Parasitic plants. Weeds</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>Standard error</topic><topic>Statistical variance</topic><topic>synergism</topic><topic>T tests</topic><topic>Weeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blouin, D.C</creatorcontrib><creatorcontrib>Webster, E.P</creatorcontrib><creatorcontrib>Zhang, W</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Weed technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blouin, D.C</au><au>Webster, E.P</au><au>Zhang, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of synergistic and antagonistic effects of herbicides using nonlinear mixed-model methodology</atitle><jtitle>Weed technology</jtitle><date>2004-04-01</date><risdate>2004</risdate><volume>18</volume><issue>2</issue><spage>464</spage><epage>472</epage><pages>464-472</pages><issn>0890-037X</issn><eissn>1550-2740</eissn><coden>WETEE9</coden><abstract>When herbicides are applied in mixture, and infestation by weeds is less than expected compared with when herbicides are applied alone, a synergistic effect is said to exist. The inverse response is described as being antagonistic. However, if the expected response is defined as a multiplicative, nonlinear function of the means for the herbicides when applied alone, then standard linear model methodology for tests of hypotheses does not apply directly. Consequently, nonlinear mixed-model methodology was explored using the nonlinear mixed-model procedure (PROC NLMIXED) of SAS System. Generality of the methodology is illustrated using data from a randomized block design with repeated measures in time. Nonlinear mixed-model estimates and tests of synergistic and antagonistic effects were more sensitive in detecting significance, and PROC NLMIXED was a versatile tool for implementation.</abstract><cop>Lawrence, KS</cop><pub>Weed Science Society of America</pub><doi>10.1614/WT-03-047R1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-037X |
ispartof | Weed technology, 2004-04, Vol.18 (2), p.464-472 |
issn | 0890-037X 1550-2740 |
language | eng |
recordid | cdi_crossref_primary_10_1614_WT_03_047R1 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Analytical estimating antagonists Biological and medical sciences Chemical control Datasets Education/Extension Estimation methods Fundamental and applied biological sciences. Psychology Graph theory Herbicides Infestation mathematical models Modeling Parasitic plants. Weeds Phytopathology. Animal pests. Plant and forest protection Standard error Statistical variance synergism T tests Weeds |
title | Analysis of synergistic and antagonistic effects of herbicides using nonlinear mixed-model methodology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20synergistic%20and%20antagonistic%20effects%20of%20herbicides%20using%20nonlinear%20mixed-model%20methodology&rft.jtitle=Weed%20technology&rft.au=Blouin,%20D.C&rft.date=2004-04-01&rft.volume=18&rft.issue=2&rft.spage=464&rft.epage=472&rft.pages=464-472&rft.issn=0890-037X&rft.eissn=1550-2740&rft.coden=WETEE9&rft_id=info:doi/10.1614/WT-03-047R1&rft_dat=%3Cjstor_cross%3E3989243%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-19b910af6d9185b1b53fed9c3860517363523b5082a260c164d831c7f3388ea23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3989243&rfr_iscdi=true |