Loading…

Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal

We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F(KFCM-F) as...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers of information technology & electronic engineering 2014-07, Vol.15 (7), p.551-563
Main Authors: Zang, Xian, Vista, Felipe P., Chong, Kil To
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-c10c0243390ad9a0b009eb2acb0efea015a156055c3954ba8dae9e4740f3d2ec3
cites cdi_FETCH-LOGICAL-c331t-c10c0243390ad9a0b009eb2acb0efea015a156055c3954ba8dae9e4740f3d2ec3
container_end_page 563
container_issue 7
container_start_page 551
container_title Frontiers of information technology & electronic engineering
container_volume 15
creator Zang, Xian
Vista, Felipe P.
Chong, Kil To
description We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F(KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means(FCM): sen- sitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the compu-tational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.
doi_str_mv 10.1631/jzus.C1300320
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1631_jzus_C1300320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>661626626</cqvip_id><sourcerecordid>2918722754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-c10c0243390ad9a0b009eb2acb0efea015a156055c3954ba8dae9e4740f3d2ec3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWGqP3oOet83HJm2OUqwKBS8K3pZsOrvduptsk6zS_vVuaa0nh4GZw-_NGx5Ct5SMqeR0stl3YTynnBDOyAUa0JlUCVXy4_K8C3qNRiFsSF9cCCX5AJULHSIua5frGn-Ct1Djotvvd9gkDWgbsKm7EMFXtsS6Lp2v4rrBhfPYOBuc1TZOvtx3LwtQNmCjjpWz2BU4tABmjUNVWl3foKtC1wFGpzlE74vHt_lzsnx9epk_LBPDOY2JocQQlnKuiF4pTXJCFORMm5xAAZpQoamQRAjDlUhzPVtpUJBOU1LwFQPDh-j-eLf1bttBiNnGdb5_IGRM0dmUsalIeyo5Usa7EDwUWeurRvtdRkl2iDM7xJn9xtnz4yMf2kMQ4P-u_ie4OxmsnS23vebsICWVTPbNfwCah4Vr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918722754</pqid></control><display><type>article</type><title>Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal</title><source>Springer Nature</source><creator>Zang, Xian ; Vista, Felipe P. ; Chong, Kil To</creator><creatorcontrib>Zang, Xian ; Vista, Felipe P. ; Chong, Kil To</creatorcontrib><description>We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F(KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means(FCM): sen- sitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the compu-tational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.</description><identifier>ISSN: 1869-1951</identifier><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 1869-196X</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/jzus.C1300320</identifier><language>eng</language><publisher>Heidelberg: Zhejiang University Press</publisher><subject>Algorithms ; Clustering ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Consonants (speech) ; Datasets ; Electrical Engineering ; Electronics and Microelectronics ; Instrumentation ; Networks ; Segmentation ; Vowels</subject><ispartof>Frontiers of information technology &amp; electronic engineering, 2014-07, Vol.15 (7), p.551-563</ispartof><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-c10c0243390ad9a0b009eb2acb0efea015a156055c3954ba8dae9e4740f3d2ec3</citedby><cites>FETCH-LOGICAL-c331t-c10c0243390ad9a0b009eb2acb0efea015a156055c3954ba8dae9e4740f3d2ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589X/89589X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zang, Xian</creatorcontrib><creatorcontrib>Vista, Felipe P.</creatorcontrib><creatorcontrib>Chong, Kil To</creatorcontrib><title>Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal</title><title>Frontiers of information technology &amp; electronic engineering</title><addtitle>J. Zhejiang Univ. - Sci. C</addtitle><addtitle>Journal of zhejiang university science</addtitle><description>We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F(KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means(FCM): sen- sitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the compu-tational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Consonants (speech)</subject><subject>Datasets</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Networks</subject><subject>Segmentation</subject><subject>Vowels</subject><issn>1869-1951</issn><issn>2095-9184</issn><issn>1869-196X</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWGqP3oOet83HJm2OUqwKBS8K3pZsOrvduptsk6zS_vVuaa0nh4GZw-_NGx5Ct5SMqeR0stl3YTynnBDOyAUa0JlUCVXy4_K8C3qNRiFsSF9cCCX5AJULHSIua5frGn-Ct1Djotvvd9gkDWgbsKm7EMFXtsS6Lp2v4rrBhfPYOBuc1TZOvtx3LwtQNmCjjpWz2BU4tABmjUNVWl3foKtC1wFGpzlE74vHt_lzsnx9epk_LBPDOY2JocQQlnKuiF4pTXJCFORMm5xAAZpQoamQRAjDlUhzPVtpUJBOU1LwFQPDh-j-eLf1bttBiNnGdb5_IGRM0dmUsalIeyo5Usa7EDwUWeurRvtdRkl2iDM7xJn9xtnz4yMf2kMQ4P-u_ie4OxmsnS23vebsICWVTPbNfwCah4Vr</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Zang, Xian</creator><creator>Vista, Felipe P.</creator><creator>Chong, Kil To</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140701</creationdate><title>Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal</title><author>Zang, Xian ; Vista, Felipe P. ; Chong, Kil To</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-c10c0243390ad9a0b009eb2acb0efea015a156055c3954ba8dae9e4740f3d2ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Consonants (speech)</topic><topic>Datasets</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Networks</topic><topic>Segmentation</topic><topic>Vowels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zang, Xian</creatorcontrib><creatorcontrib>Vista, Felipe P.</creatorcontrib><creatorcontrib>Chong, Kil To</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zang, Xian</au><au>Vista, Felipe P.</au><au>Chong, Kil To</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal</atitle><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle><stitle>J. Zhejiang Univ. - Sci. C</stitle><addtitle>Journal of zhejiang university science</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>15</volume><issue>7</issue><spage>551</spage><epage>563</epage><pages>551-563</pages><issn>1869-1951</issn><issn>2095-9184</issn><eissn>1869-196X</eissn><eissn>2095-9230</eissn><abstract>We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F(KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means(FCM): sen- sitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the compu-tational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.</abstract><cop>Heidelberg</cop><pub>Zhejiang University Press</pub><doi>10.1631/jzus.C1300320</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1869-1951
ispartof Frontiers of information technology & electronic engineering, 2014-07, Vol.15 (7), p.551-563
issn 1869-1951
2095-9184
1869-196X
2095-9230
language eng
recordid cdi_crossref_primary_10_1631_jzus_C1300320
source Springer Nature
subjects Algorithms
Clustering
Communications Engineering
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Consonants (speech)
Datasets
Electrical Engineering
Electronics and Microelectronics
Instrumentation
Networks
Segmentation
Vowels
title Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20global%20kernel%20fuzzy%20c-means%20clustering%20algorithm%20for%20consonant/vowel%20segmentation%20of%20speech%20signal&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Zang,%20Xian&rft.date=2014-07-01&rft.volume=15&rft.issue=7&rft.spage=551&rft.epage=563&rft.pages=551-563&rft.issn=1869-1951&rft.eissn=1869-196X&rft_id=info:doi/10.1631/jzus.C1300320&rft_dat=%3Cproquest_cross%3E2918722754%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-c10c0243390ad9a0b009eb2acb0efea015a156055c3954ba8dae9e4740f3d2ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918722754&rft_id=info:pmid/&rft_cqvip_id=661626626&rfr_iscdi=true