Loading…
Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal
We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F(KFCM-F) as...
Saved in:
Published in: | Frontiers of information technology & electronic engineering 2014-07, Vol.15 (7), p.551-563 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c331t-c10c0243390ad9a0b009eb2acb0efea015a156055c3954ba8dae9e4740f3d2ec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-c10c0243390ad9a0b009eb2acb0efea015a156055c3954ba8dae9e4740f3d2ec3 |
container_end_page | 563 |
container_issue | 7 |
container_start_page | 551 |
container_title | Frontiers of information technology & electronic engineering |
container_volume | 15 |
creator | Zang, Xian Vista, Felipe P. Chong, Kil To |
description | We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F(KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means(FCM): sen- sitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the compu-tational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets. |
doi_str_mv | 10.1631/jzus.C1300320 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1631_jzus_C1300320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>661626626</cqvip_id><sourcerecordid>2918722754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-c10c0243390ad9a0b009eb2acb0efea015a156055c3954ba8dae9e4740f3d2ec3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWGqP3oOet83HJm2OUqwKBS8K3pZsOrvduptsk6zS_vVuaa0nh4GZw-_NGx5Ct5SMqeR0stl3YTynnBDOyAUa0JlUCVXy4_K8C3qNRiFsSF9cCCX5AJULHSIua5frGn-Ct1Djotvvd9gkDWgbsKm7EMFXtsS6Lp2v4rrBhfPYOBuc1TZOvtx3LwtQNmCjjpWz2BU4tABmjUNVWl3foKtC1wFGpzlE74vHt_lzsnx9epk_LBPDOY2JocQQlnKuiF4pTXJCFORMm5xAAZpQoamQRAjDlUhzPVtpUJBOU1LwFQPDh-j-eLf1bttBiNnGdb5_IGRM0dmUsalIeyo5Usa7EDwUWeurRvtdRkl2iDM7xJn9xtnz4yMf2kMQ4P-u_ie4OxmsnS23vebsICWVTPbNfwCah4Vr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918722754</pqid></control><display><type>article</type><title>Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal</title><source>Springer Nature</source><creator>Zang, Xian ; Vista, Felipe P. ; Chong, Kil To</creator><creatorcontrib>Zang, Xian ; Vista, Felipe P. ; Chong, Kil To</creatorcontrib><description>We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F(KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means(FCM): sen- sitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the compu-tational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.</description><identifier>ISSN: 1869-1951</identifier><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 1869-196X</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/jzus.C1300320</identifier><language>eng</language><publisher>Heidelberg: Zhejiang University Press</publisher><subject>Algorithms ; Clustering ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Consonants (speech) ; Datasets ; Electrical Engineering ; Electronics and Microelectronics ; Instrumentation ; Networks ; Segmentation ; Vowels</subject><ispartof>Frontiers of information technology & electronic engineering, 2014-07, Vol.15 (7), p.551-563</ispartof><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-c10c0243390ad9a0b009eb2acb0efea015a156055c3954ba8dae9e4740f3d2ec3</citedby><cites>FETCH-LOGICAL-c331t-c10c0243390ad9a0b009eb2acb0efea015a156055c3954ba8dae9e4740f3d2ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589X/89589X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zang, Xian</creatorcontrib><creatorcontrib>Vista, Felipe P.</creatorcontrib><creatorcontrib>Chong, Kil To</creatorcontrib><title>Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal</title><title>Frontiers of information technology & electronic engineering</title><addtitle>J. Zhejiang Univ. - Sci. C</addtitle><addtitle>Journal of zhejiang university science</addtitle><description>We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F(KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means(FCM): sen- sitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the compu-tational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Consonants (speech)</subject><subject>Datasets</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Networks</subject><subject>Segmentation</subject><subject>Vowels</subject><issn>1869-1951</issn><issn>2095-9184</issn><issn>1869-196X</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWGqP3oOet83HJm2OUqwKBS8K3pZsOrvduptsk6zS_vVuaa0nh4GZw-_NGx5Ct5SMqeR0stl3YTynnBDOyAUa0JlUCVXy4_K8C3qNRiFsSF9cCCX5AJULHSIua5frGn-Ct1Djotvvd9gkDWgbsKm7EMFXtsS6Lp2v4rrBhfPYOBuc1TZOvtx3LwtQNmCjjpWz2BU4tABmjUNVWl3foKtC1wFGpzlE74vHt_lzsnx9epk_LBPDOY2JocQQlnKuiF4pTXJCFORMm5xAAZpQoamQRAjDlUhzPVtpUJBOU1LwFQPDh-j-eLf1bttBiNnGdb5_IGRM0dmUsalIeyo5Usa7EDwUWeurRvtdRkl2iDM7xJn9xtnz4yMf2kMQ4P-u_ie4OxmsnS23vebsICWVTPbNfwCah4Vr</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Zang, Xian</creator><creator>Vista, Felipe P.</creator><creator>Chong, Kil To</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140701</creationdate><title>Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal</title><author>Zang, Xian ; Vista, Felipe P. ; Chong, Kil To</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-c10c0243390ad9a0b009eb2acb0efea015a156055c3954ba8dae9e4740f3d2ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Consonants (speech)</topic><topic>Datasets</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Networks</topic><topic>Segmentation</topic><topic>Vowels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zang, Xian</creatorcontrib><creatorcontrib>Vista, Felipe P.</creatorcontrib><creatorcontrib>Chong, Kil To</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology & electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zang, Xian</au><au>Vista, Felipe P.</au><au>Chong, Kil To</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal</atitle><jtitle>Frontiers of information technology & electronic engineering</jtitle><stitle>J. Zhejiang Univ. - Sci. C</stitle><addtitle>Journal of zhejiang university science</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>15</volume><issue>7</issue><spage>551</spage><epage>563</epage><pages>551-563</pages><issn>1869-1951</issn><issn>2095-9184</issn><eissn>1869-196X</eissn><eissn>2095-9230</eissn><abstract>We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F(KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means(FCM): sen- sitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the compu-tational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.</abstract><cop>Heidelberg</cop><pub>Zhejiang University Press</pub><doi>10.1631/jzus.C1300320</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-1951 |
ispartof | Frontiers of information technology & electronic engineering, 2014-07, Vol.15 (7), p.551-563 |
issn | 1869-1951 2095-9184 1869-196X 2095-9230 |
language | eng |
recordid | cdi_crossref_primary_10_1631_jzus_C1300320 |
source | Springer Nature |
subjects | Algorithms Clustering Communications Engineering Computer Hardware Computer Science Computer Systems Organization and Communication Networks Consonants (speech) Datasets Electrical Engineering Electronics and Microelectronics Instrumentation Networks Segmentation Vowels |
title | Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20global%20kernel%20fuzzy%20c-means%20clustering%20algorithm%20for%20consonant/vowel%20segmentation%20of%20speech%20signal&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Zang,%20Xian&rft.date=2014-07-01&rft.volume=15&rft.issue=7&rft.spage=551&rft.epage=563&rft.pages=551-563&rft.issn=1869-1951&rft.eissn=1869-196X&rft_id=info:doi/10.1631/jzus.C1300320&rft_dat=%3Cproquest_cross%3E2918722754%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-c10c0243390ad9a0b009eb2acb0efea015a156055c3954ba8dae9e4740f3d2ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918722754&rft_id=info:pmid/&rft_cqvip_id=661626626&rfr_iscdi=true |