Loading…
Informing Recovery Management of the Threatened Blackside Dace, Chrosomus cumberlandensis, using a Bayesian-Belief Network Model
Integrated modeling frameworks allow resource managers to incorporate multiple sources of information (both data and expert judgment), acknowledge uncertainty, and make quantitative predictions about resource outcomes. To demonstrate the utility of an integrated-modeling approach for recovery planni...
Saved in:
Published in: | Southeastern naturalist (Steuben, Me.) Me.), 2013, Vol.12 (sp4), p.143-161 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 161 |
container_issue | sp4 |
container_start_page | 143 |
container_title | Southeastern naturalist (Steuben, Me.) |
container_volume | 12 |
creator | McAbee, Kevin T. Nibbelink, Nathan P. Johnson, Trisha D. Mattingly, Hayden T. |
description | Integrated modeling frameworks allow resource managers to incorporate multiple sources of information (both data and expert judgment), acknowledge uncertainty, and make quantitative predictions about resource outcomes. To demonstrate the utility of an integrated-modeling approach for recovery planning of imperiled species, we developed a comprehensive model in the form of a Bayesian-belief network to support recovery of a federally listed stream fish, Chrosomus cumberlandensis (Blackside Dace). Our model quantitatively combined expert judgment and data from empirical studies to create a comprehensive model that is testable, transferable, and easily communicated. Sensitivity- and scenario-building analyses demonstrated that mining impacts such as elevated stream conductivity were the most influential variables affecting predicted local Blackside Dace population persistence. Our results suggest that mining impacts are a logical focal point for research and recovery actions for the species, but additional review and revision of the model are recommended. Taken as a whole, our effort enhances the current and future capacity for informed recovery-management of Blackside Dace populations. |
doi_str_mv | 10.1656/058.012.s416 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1656_058_012_s416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42003910</jstor_id><sourcerecordid>42003910</sourcerecordid><originalsourceid>FETCH-LOGICAL-b940-f762bdef04e5f8039a1eec8c94efa257b537b6b3966a73b0b646089692e864793</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKc3r0LOss4kTdPk6OavwaYgu5ekfdm6tYkknbKbf7odE4-e3oPvh-97fBC6pmRMRSbuSCbHhLJx5FScoAFVqUwyTtlpv2dMJjlR7BxdxLghhApG5QB9z5z1oa3dCr9D6T8h7PFCO72CFlyHvcXdGvByHUB34KDCk0aX21hXgB90CSM8XQcffbuLuNy1BkKjXQUu1nGEd_FQq_FE7yHW2iUTaGqw-BW6Lx-2eOEraC7RmdVNhKvfOUTLp8fl9CWZvz3PpvfzxChOEpsLZiqwhENmJUmVpgClLBUHq1mWmyzNjTCpEkLnqSFGcEGkEoqBFDxX6RCNjrVl_24MYIuPULc67AtKioO8opdX9PKKg7wevznim9j58MdyRvrblPT57TE3tfcO_i_7AUu0ehU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Informing Recovery Management of the Threatened Blackside Dace, Chrosomus cumberlandensis, using a Bayesian-Belief Network Model</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>McAbee, Kevin T. ; Nibbelink, Nathan P. ; Johnson, Trisha D. ; Mattingly, Hayden T.</creator><creatorcontrib>McAbee, Kevin T. ; Nibbelink, Nathan P. ; Johnson, Trisha D. ; Mattingly, Hayden T.</creatorcontrib><description>Integrated modeling frameworks allow resource managers to incorporate multiple sources of information (both data and expert judgment), acknowledge uncertainty, and make quantitative predictions about resource outcomes. To demonstrate the utility of an integrated-modeling approach for recovery planning of imperiled species, we developed a comprehensive model in the form of a Bayesian-belief network to support recovery of a federally listed stream fish, Chrosomus cumberlandensis (Blackside Dace). Our model quantitatively combined expert judgment and data from empirical studies to create a comprehensive model that is testable, transferable, and easily communicated. Sensitivity- and scenario-building analyses demonstrated that mining impacts such as elevated stream conductivity were the most influential variables affecting predicted local Blackside Dace population persistence. Our results suggest that mining impacts are a logical focal point for research and recovery actions for the species, but additional review and revision of the model are recommended. Taken as a whole, our effort enhances the current and future capacity for informed recovery-management of Blackside Dace populations.</description><identifier>ISSN: 1528-7092</identifier><identifier>EISSN: 1938-5412</identifier><identifier>DOI: 10.1656/058.012.s416</identifier><language>eng</language><publisher>Humboldt Field Research Institute</publisher><subject>Depopulation ; Drought ; Ecological modeling ; Habitat conservation ; Modeling ; Population ecology ; Population growth ; Species ; Stream habitats ; Wildlife management</subject><ispartof>Southeastern naturalist (Steuben, Me.), 2013, Vol.12 (sp4), p.143-161</ispartof><rights>Copyright © 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42003910$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42003910$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4022,27922,27923,27924,58237,58470</link.rule.ids></links><search><creatorcontrib>McAbee, Kevin T.</creatorcontrib><creatorcontrib>Nibbelink, Nathan P.</creatorcontrib><creatorcontrib>Johnson, Trisha D.</creatorcontrib><creatorcontrib>Mattingly, Hayden T.</creatorcontrib><title>Informing Recovery Management of the Threatened Blackside Dace, Chrosomus cumberlandensis, using a Bayesian-Belief Network Model</title><title>Southeastern naturalist (Steuben, Me.)</title><description>Integrated modeling frameworks allow resource managers to incorporate multiple sources of information (both data and expert judgment), acknowledge uncertainty, and make quantitative predictions about resource outcomes. To demonstrate the utility of an integrated-modeling approach for recovery planning of imperiled species, we developed a comprehensive model in the form of a Bayesian-belief network to support recovery of a federally listed stream fish, Chrosomus cumberlandensis (Blackside Dace). Our model quantitatively combined expert judgment and data from empirical studies to create a comprehensive model that is testable, transferable, and easily communicated. Sensitivity- and scenario-building analyses demonstrated that mining impacts such as elevated stream conductivity were the most influential variables affecting predicted local Blackside Dace population persistence. Our results suggest that mining impacts are a logical focal point for research and recovery actions for the species, but additional review and revision of the model are recommended. Taken as a whole, our effort enhances the current and future capacity for informed recovery-management of Blackside Dace populations.</description><subject>Depopulation</subject><subject>Drought</subject><subject>Ecological modeling</subject><subject>Habitat conservation</subject><subject>Modeling</subject><subject>Population ecology</subject><subject>Population growth</subject><subject>Species</subject><subject>Stream habitats</subject><subject>Wildlife management</subject><issn>1528-7092</issn><issn>1938-5412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4MoOKc3r0LOss4kTdPk6OavwaYgu5ekfdm6tYkknbKbf7odE4-e3oPvh-97fBC6pmRMRSbuSCbHhLJx5FScoAFVqUwyTtlpv2dMJjlR7BxdxLghhApG5QB9z5z1oa3dCr9D6T8h7PFCO72CFlyHvcXdGvByHUB34KDCk0aX21hXgB90CSM8XQcffbuLuNy1BkKjXQUu1nGEd_FQq_FE7yHW2iUTaGqw-BW6Lx-2eOEraC7RmdVNhKvfOUTLp8fl9CWZvz3PpvfzxChOEpsLZiqwhENmJUmVpgClLBUHq1mWmyzNjTCpEkLnqSFGcEGkEoqBFDxX6RCNjrVl_24MYIuPULc67AtKioO8opdX9PKKg7wevznim9j58MdyRvrblPT57TE3tfcO_i_7AUu0ehU</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>McAbee, Kevin T.</creator><creator>Nibbelink, Nathan P.</creator><creator>Johnson, Trisha D.</creator><creator>Mattingly, Hayden T.</creator><general>Humboldt Field Research Institute</general><general>Eagle Hill Institute</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2013</creationdate><title>Informing Recovery Management of the Threatened Blackside Dace, Chrosomus cumberlandensis, using a Bayesian-Belief Network Model</title><author>McAbee, Kevin T. ; Nibbelink, Nathan P. ; Johnson, Trisha D. ; Mattingly, Hayden T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b940-f762bdef04e5f8039a1eec8c94efa257b537b6b3966a73b0b646089692e864793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Depopulation</topic><topic>Drought</topic><topic>Ecological modeling</topic><topic>Habitat conservation</topic><topic>Modeling</topic><topic>Population ecology</topic><topic>Population growth</topic><topic>Species</topic><topic>Stream habitats</topic><topic>Wildlife management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McAbee, Kevin T.</creatorcontrib><creatorcontrib>Nibbelink, Nathan P.</creatorcontrib><creatorcontrib>Johnson, Trisha D.</creatorcontrib><creatorcontrib>Mattingly, Hayden T.</creatorcontrib><collection>CrossRef</collection><jtitle>Southeastern naturalist (Steuben, Me.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McAbee, Kevin T.</au><au>Nibbelink, Nathan P.</au><au>Johnson, Trisha D.</au><au>Mattingly, Hayden T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Informing Recovery Management of the Threatened Blackside Dace, Chrosomus cumberlandensis, using a Bayesian-Belief Network Model</atitle><jtitle>Southeastern naturalist (Steuben, Me.)</jtitle><date>2013</date><risdate>2013</risdate><volume>12</volume><issue>sp4</issue><spage>143</spage><epage>161</epage><pages>143-161</pages><issn>1528-7092</issn><eissn>1938-5412</eissn><abstract>Integrated modeling frameworks allow resource managers to incorporate multiple sources of information (both data and expert judgment), acknowledge uncertainty, and make quantitative predictions about resource outcomes. To demonstrate the utility of an integrated-modeling approach for recovery planning of imperiled species, we developed a comprehensive model in the form of a Bayesian-belief network to support recovery of a federally listed stream fish, Chrosomus cumberlandensis (Blackside Dace). Our model quantitatively combined expert judgment and data from empirical studies to create a comprehensive model that is testable, transferable, and easily communicated. Sensitivity- and scenario-building analyses demonstrated that mining impacts such as elevated stream conductivity were the most influential variables affecting predicted local Blackside Dace population persistence. Our results suggest that mining impacts are a logical focal point for research and recovery actions for the species, but additional review and revision of the model are recommended. Taken as a whole, our effort enhances the current and future capacity for informed recovery-management of Blackside Dace populations.</abstract><pub>Humboldt Field Research Institute</pub><doi>10.1656/058.012.s416</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1528-7092 |
ispartof | Southeastern naturalist (Steuben, Me.), 2013, Vol.12 (sp4), p.143-161 |
issn | 1528-7092 1938-5412 |
language | eng |
recordid | cdi_crossref_primary_10_1656_058_012_s416 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Depopulation Drought Ecological modeling Habitat conservation Modeling Population ecology Population growth Species Stream habitats Wildlife management |
title | Informing Recovery Management of the Threatened Blackside Dace, Chrosomus cumberlandensis, using a Bayesian-Belief Network Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Informing%20Recovery%20Management%20of%20the%20Threatened%20Blackside%20Dace,%20Chrosomus%20cumberlandensis,%20using%20a%20Bayesian-Belief%20Network%20Model&rft.jtitle=Southeastern%20naturalist%20(Steuben,%20Me.)&rft.au=McAbee,%20Kevin%20T.&rft.date=2013&rft.volume=12&rft.issue=sp4&rft.spage=143&rft.epage=161&rft.pages=143-161&rft.issn=1528-7092&rft.eissn=1938-5412&rft_id=info:doi/10.1656/058.012.s416&rft_dat=%3Cjstor_cross%3E42003910%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b940-f762bdef04e5f8039a1eec8c94efa257b537b6b3966a73b0b646089692e864793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=42003910&rfr_iscdi=true |