Loading…

Influence of Ginger Rhizome (Zingiber officinale Rosc) on Survival, Glutathione and Lipid Peroxidation in Mice after Whole-Body Exposure to Gamma Radiation

Jagetia, G. C., Baliga, M. S., Venkatesh, P. and Ulloor, J. N. Influence of Ginger Rhizome (Zingiber officinale Rosc) on Survival, Glutathione and Lipid Peroxidation in Mice after Whole-Body Exposure to Gamma Radiation. Radiat. Res. 160, 584–592 (2003). The radioprotective effect of the hydroalcohol...

Full description

Saved in:
Bibliographic Details
Published in:Radiation research 2003-11, Vol.160 (5), p.584-592
Main Authors: Jagetia, Ganesh Chandra, Baliga, Manjeshwar Shrinath, Venkatesh, Ponemone, Ulloor, Jagadish N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Jagetia, G. C., Baliga, M. S., Venkatesh, P. and Ulloor, J. N. Influence of Ginger Rhizome (Zingiber officinale Rosc) on Survival, Glutathione and Lipid Peroxidation in Mice after Whole-Body Exposure to Gamma Radiation. Radiat. Res. 160, 584–592 (2003). The radioprotective effect of the hydroalcoholic extract of ginger rhizome, Zingiber officinale (ZOE), was studied. Mice were given 10 mg/kg ZOE intraperitoneally once daily for five consecutive days before exposure to 6–12 Gy of γ radiation and were monitored daily up to 30 days postirradiation for the development of symptoms of radiation sickness and mortality. Pretreatment of mice with ZOE reduced the severity of radiation sickness and the mortality at all doses. The ZOE treatment protected mice from GI syndrome as well as bone marrow syndrome. The dose reduction factor for ZOE was found to be 1.15. The optimum protective dose of 10 mg/kg ZOE was 150 of the LD50 (500 mg/kg). Irradiation of the animals resulted in a dose-dependent elevation in the lipid peroxidation and depletion of GSH on day 31 postirradiation; both effects were lessened by pretreatment with ZOE. ZOE also had a dose-dependent antimicrobial activity against Pseudomonas aeruginosa, Salmonella typhimurium, Escherichia coli and Candida albicans.
ISSN:0033-7587
1938-5404
DOI:10.1667/RR3057