Loading…
Examination of Whey Degreasing by Modified Membrane Filtration
The largest amount of dairy by-products, especially the whey, comes from the manufacture of cheese. The whey proteins are used in several different industry technologies. The forage production is used for animal feeding in the forms of various flours mixed in feeds, and the food industry uses whey p...
Saved in:
Published in: | Journal of agricultural science and technology. B 2016-01, Vol.6 (1), p.57-66 |
---|---|
Main Author: | |
Format: | Article |
Language: | chi ; eng |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The largest amount of dairy by-products, especially the whey, comes from the manufacture of cheese. The whey proteins are used in several different industry technologies. The forage production is used for animal feeding in the forms of various flours mixed in feeds, and the food industry uses whey proteins as human nutrition, such as different dry soups, infant formulas and supplements. The fat components of whey may inhibit the efficient processing and might impair the use of whey in these technologies. Thus, the aim of the experiment was to investigate a cheap and economical separation of the lipid fraction of whey. This separation method was made by microfiltration, which is an inexpensive, effective and energy efficient method for this task. During the measurements, 0.2 μm and 0.45 μm microfiltration membranes were used in a laboratory tubular membrane filtration module, and the membrane separation method was combined and modified by using astatic mixer and/or air insufflation. The same pore size membranes were used in a vibrating membrane filtration equipment (VSEP), too. The two different membrane filtration devices allowed the comparison of the effect of vibration and the effect of the static mixer and/or air insufflation. The flux values above 0.2 MPa transmembrane pressures strongly decreased on using the tubular membrane. Therefore, it can be determined that the use of the lower transmembrane pressures gave better flux combined with air insufflation and the use of static mixer. The flux values increased three times higher with using vibration during the microfiltration process than that without vibration. Comparing these methods, it can be concluded that the separation made on tubular membrane (0.2 μm) combined with statics mixer gave sufficient result according to the degreasing, retentions and flux values of the other components. |
---|---|
ISSN: | 2161-6264 2161-6264 |
DOI: | 10.17265/2161-6264/2016.01.007 |