Loading…
Depth-map generation for multi-view autostereoscopic 3-D displays based on the SIFT algorithm constrained by boundary
— A depth‐map estimation method, which converts two‐dimensional images into three‐dimensional (3‐D) images for multi‐view autostereoscopic 3‐D displays, is presented. The proposed method utilizes the Scale Invariant Feature Transform (SIFT) matching algorithm to create the sparse depth map. The imag...
Saved in:
Published in: | Journal of the Society for Information Display 2010-07, Vol.18 (7), p.513-518 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | — A depth‐map estimation method, which converts two‐dimensional images into three‐dimensional (3‐D) images for multi‐view autostereoscopic 3‐D displays, is presented. The proposed method utilizes the Scale Invariant Feature Transform (SIFT) matching algorithm to create the sparse depth map. The image boundaries are labeled by using the Sobel operator. A dense depth map is obtained by using the Zero‐Mean Normalized Cross‐Correlation (ZNCC) propagation matching method, which is constrained by the labeled boundaries. Finally, by using depth rendering, the parallax images are generated and synthesized into a stereoscopic image for multi‐view autostereoscopic 3‐D displays. Experimental results show that this scheme achieves good performances on both parallax image generation and multi‐view autostereoscopic 3‐D displays. |
---|---|
ISSN: | 1071-0922 1938-3657 |
DOI: | 10.1889/JSID18.7.513 |