Loading…

Influence of L-cystine as an Additive in the Negative Electrolyte on Performance of Vanadium Redox Flow Battery

L-cystine (LC) was employed as an additive to inhibit crystallization of V(II) or V(III) specie in the negative electrolyte and extend the practical application of vanadium redox flow battery (VRB) at below-ambient temperatures. UV-vis spectrometry showed LC has no effect on the absorption in the ra...

Full description

Saved in:
Bibliographic Details
Published in:International journal of electrochemical science 2017-04, Vol.12 (4), p.2893-2908
Main Authors: Wang, Nanfang, Chen, Yong, Han, Huiguo, Cao, Min, Bi, Xinqiang, Peng, Sui, Cheng, Xingde
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-1269f9040387d35f8aa5c6199bd502d755a93ef88f2793d157483e873b8ff0843
cites cdi_FETCH-LOGICAL-c316t-1269f9040387d35f8aa5c6199bd502d755a93ef88f2793d157483e873b8ff0843
container_end_page 2908
container_issue 4
container_start_page 2893
container_title International journal of electrochemical science
container_volume 12
creator Wang, Nanfang
Chen, Yong
Han, Huiguo
Cao, Min
Bi, Xinqiang
Peng, Sui
Cheng, Xingde
description L-cystine (LC) was employed as an additive to inhibit crystallization of V(II) or V(III) specie in the negative electrolyte and extend the practical application of vanadium redox flow battery (VRB) at below-ambient temperatures. UV-vis spectrometry showed LC has no effect on the absorption in the range of 300-800 nm. Crossover the membrane testing indicated that LC can permeate from Negative side to Positive side across the Nafion 117. Static thermal stability testing showed LC can significantly inhibit precipitation of V(II)~V(IV) ions or V(V) in 1.8 M vanadium electrolyte with 3.0 M H2SO4 at 5 or 50 °C. It is found that 2-4 wt% LC in vanadium electrolytes can lower viscosity compared to the blank electrolyte. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) show V(III) electrolyte with 2 wt% LC exhibits superior electrochemical activity and diffusion coefficient, compared with the pristine electrolyte. Introduction of LC into the negative electrolyte can obtain better performance of VRB with higher capacity retention (91.04% vs. 84.3% ) and energy efficiency (75.77% vs. 72.27% ) than the pristine electrolyte.
doi_str_mv 10.20964/2017.04.51
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_20964_2017_04_51</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1452398123113277</els_id><sourcerecordid>S1452398123113277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1269f9040387d35f8aa5c6199bd502d755a93ef88f2793d157483e873b8ff0843</originalsourceid><addsrcrecordid>eNptUMFKAzEUDKJgqT35A7nL1mSTNMmxllYLRUXUa0g3LxrZbiTZVvfvXdsePPgu7z2YGWYGoUtKxiXRE35dEirHhI8FPUEDykVZMK3o6Z_7HI1y_iD9cM24lAMUl42vt9BUgKPHq6LqchsawDZj2-Cpc6ENO8Chwe074Ht4s_t_XkPVplh3bc9r8CMkH9PGHmVebWNd2G7wE7j4jRd1_MI3tm0hdRfozNs6w-i4h-hlMX-e3RWrh9vlbNobYHTSFrScaK8JJ0xJx4RX1opqQrVeO0FKJ4WwmoFXypdSM0eF5IqBkmytvCeKsyG6OuhWKeacwJvPFDY2dYYSs6_L_NZlCDeC9mhxQENvaRcgmVyF31JcSH1Q42L4l_cDCKltmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of L-cystine as an Additive in the Negative Electrolyte on Performance of Vanadium Redox Flow Battery</title><source>Elsevier ScienceDirect Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Nanfang ; Chen, Yong ; Han, Huiguo ; Cao, Min ; Bi, Xinqiang ; Peng, Sui ; Cheng, Xingde</creator><creatorcontrib>Wang, Nanfang ; Chen, Yong ; Han, Huiguo ; Cao, Min ; Bi, Xinqiang ; Peng, Sui ; Cheng, Xingde</creatorcontrib><description>L-cystine (LC) was employed as an additive to inhibit crystallization of V(II) or V(III) specie in the negative electrolyte and extend the practical application of vanadium redox flow battery (VRB) at below-ambient temperatures. UV-vis spectrometry showed LC has no effect on the absorption in the range of 300-800 nm. Crossover the membrane testing indicated that LC can permeate from Negative side to Positive side across the Nafion 117. Static thermal stability testing showed LC can significantly inhibit precipitation of V(II)~V(IV) ions or V(V) in 1.8 M vanadium electrolyte with 3.0 M H2SO4 at 5 or 50 °C. It is found that 2-4 wt% LC in vanadium electrolytes can lower viscosity compared to the blank electrolyte. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) show V(III) electrolyte with 2 wt% LC exhibits superior electrochemical activity and diffusion coefficient, compared with the pristine electrolyte. Introduction of LC into the negative electrolyte can obtain better performance of VRB with higher capacity retention (91.04% vs. 84.3% ) and energy efficiency (75.77% vs. 72.27% ) than the pristine electrolyte.</description><identifier>ISSN: 1452-3981</identifier><identifier>EISSN: 1452-3981</identifier><identifier>DOI: 10.20964/2017.04.51</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Electrochemical activity ; L-cystine ; Negative electrolyte ; Thermal stability ; Vanadium redox flow battery</subject><ispartof>International journal of electrochemical science, 2017-04, Vol.12 (4), p.2893-2908</ispartof><rights>2017 The Authors. Published by ESG</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1269f9040387d35f8aa5c6199bd502d755a93ef88f2793d157483e873b8ff0843</citedby><cites>FETCH-LOGICAL-c316t-1269f9040387d35f8aa5c6199bd502d755a93ef88f2793d157483e873b8ff0843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1452398123113277$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Wang, Nanfang</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Han, Huiguo</creatorcontrib><creatorcontrib>Cao, Min</creatorcontrib><creatorcontrib>Bi, Xinqiang</creatorcontrib><creatorcontrib>Peng, Sui</creatorcontrib><creatorcontrib>Cheng, Xingde</creatorcontrib><title>Influence of L-cystine as an Additive in the Negative Electrolyte on Performance of Vanadium Redox Flow Battery</title><title>International journal of electrochemical science</title><description>L-cystine (LC) was employed as an additive to inhibit crystallization of V(II) or V(III) specie in the negative electrolyte and extend the practical application of vanadium redox flow battery (VRB) at below-ambient temperatures. UV-vis spectrometry showed LC has no effect on the absorption in the range of 300-800 nm. Crossover the membrane testing indicated that LC can permeate from Negative side to Positive side across the Nafion 117. Static thermal stability testing showed LC can significantly inhibit precipitation of V(II)~V(IV) ions or V(V) in 1.8 M vanadium electrolyte with 3.0 M H2SO4 at 5 or 50 °C. It is found that 2-4 wt% LC in vanadium electrolytes can lower viscosity compared to the blank electrolyte. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) show V(III) electrolyte with 2 wt% LC exhibits superior electrochemical activity and diffusion coefficient, compared with the pristine electrolyte. Introduction of LC into the negative electrolyte can obtain better performance of VRB with higher capacity retention (91.04% vs. 84.3% ) and energy efficiency (75.77% vs. 72.27% ) than the pristine electrolyte.</description><subject>Electrochemical activity</subject><subject>L-cystine</subject><subject>Negative electrolyte</subject><subject>Thermal stability</subject><subject>Vanadium redox flow battery</subject><issn>1452-3981</issn><issn>1452-3981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptUMFKAzEUDKJgqT35A7nL1mSTNMmxllYLRUXUa0g3LxrZbiTZVvfvXdsePPgu7z2YGWYGoUtKxiXRE35dEirHhI8FPUEDykVZMK3o6Z_7HI1y_iD9cM24lAMUl42vt9BUgKPHq6LqchsawDZj2-Cpc6ENO8Chwe074Ht4s_t_XkPVplh3bc9r8CMkH9PGHmVebWNd2G7wE7j4jRd1_MI3tm0hdRfozNs6w-i4h-hlMX-e3RWrh9vlbNobYHTSFrScaK8JJ0xJx4RX1opqQrVeO0FKJ4WwmoFXypdSM0eF5IqBkmytvCeKsyG6OuhWKeacwJvPFDY2dYYSs6_L_NZlCDeC9mhxQENvaRcgmVyF31JcSH1Q42L4l_cDCKltmQ</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Wang, Nanfang</creator><creator>Chen, Yong</creator><creator>Han, Huiguo</creator><creator>Cao, Min</creator><creator>Bi, Xinqiang</creator><creator>Peng, Sui</creator><creator>Cheng, Xingde</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201704</creationdate><title>Influence of L-cystine as an Additive in the Negative Electrolyte on Performance of Vanadium Redox Flow Battery</title><author>Wang, Nanfang ; Chen, Yong ; Han, Huiguo ; Cao, Min ; Bi, Xinqiang ; Peng, Sui ; Cheng, Xingde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1269f9040387d35f8aa5c6199bd502d755a93ef88f2793d157483e873b8ff0843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Electrochemical activity</topic><topic>L-cystine</topic><topic>Negative electrolyte</topic><topic>Thermal stability</topic><topic>Vanadium redox flow battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Nanfang</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Han, Huiguo</creatorcontrib><creatorcontrib>Cao, Min</creatorcontrib><creatorcontrib>Bi, Xinqiang</creatorcontrib><creatorcontrib>Peng, Sui</creatorcontrib><creatorcontrib>Cheng, Xingde</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>International journal of electrochemical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Nanfang</au><au>Chen, Yong</au><au>Han, Huiguo</au><au>Cao, Min</au><au>Bi, Xinqiang</au><au>Peng, Sui</au><au>Cheng, Xingde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of L-cystine as an Additive in the Negative Electrolyte on Performance of Vanadium Redox Flow Battery</atitle><jtitle>International journal of electrochemical science</jtitle><date>2017-04</date><risdate>2017</risdate><volume>12</volume><issue>4</issue><spage>2893</spage><epage>2908</epage><pages>2893-2908</pages><issn>1452-3981</issn><eissn>1452-3981</eissn><abstract>L-cystine (LC) was employed as an additive to inhibit crystallization of V(II) or V(III) specie in the negative electrolyte and extend the practical application of vanadium redox flow battery (VRB) at below-ambient temperatures. UV-vis spectrometry showed LC has no effect on the absorption in the range of 300-800 nm. Crossover the membrane testing indicated that LC can permeate from Negative side to Positive side across the Nafion 117. Static thermal stability testing showed LC can significantly inhibit precipitation of V(II)~V(IV) ions or V(V) in 1.8 M vanadium electrolyte with 3.0 M H2SO4 at 5 or 50 °C. It is found that 2-4 wt% LC in vanadium electrolytes can lower viscosity compared to the blank electrolyte. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) show V(III) electrolyte with 2 wt% LC exhibits superior electrochemical activity and diffusion coefficient, compared with the pristine electrolyte. Introduction of LC into the negative electrolyte can obtain better performance of VRB with higher capacity retention (91.04% vs. 84.3% ) and energy efficiency (75.77% vs. 72.27% ) than the pristine electrolyte.</abstract><pub>Elsevier B.V</pub><doi>10.20964/2017.04.51</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1452-3981
ispartof International journal of electrochemical science, 2017-04, Vol.12 (4), p.2893-2908
issn 1452-3981
1452-3981
language eng
recordid cdi_crossref_primary_10_20964_2017_04_51
source Elsevier ScienceDirect Journals; Free Full-Text Journals in Chemistry
subjects Electrochemical activity
L-cystine
Negative electrolyte
Thermal stability
Vanadium redox flow battery
title Influence of L-cystine as an Additive in the Negative Electrolyte on Performance of Vanadium Redox Flow Battery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20L-cystine%20as%20an%20Additive%20in%20the%20Negative%20Electrolyte%20on%20Performance%20of%20Vanadium%20Redox%20Flow%20Battery&rft.jtitle=International%20journal%20of%20electrochemical%20science&rft.au=Wang,%20Nanfang&rft.date=2017-04&rft.volume=12&rft.issue=4&rft.spage=2893&rft.epage=2908&rft.pages=2893-2908&rft.issn=1452-3981&rft.eissn=1452-3981&rft_id=info:doi/10.20964/2017.04.51&rft_dat=%3Celsevier_cross%3ES1452398123113277%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-1269f9040387d35f8aa5c6199bd502d755a93ef88f2793d157483e873b8ff0843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true