Loading…
Vehicle Appearance Model for Recognition System Considering the Change of Imaging Condition
We have proposed a technique to recognize a vehicle. In this technique, Gaussian Mixture Model (GMM) is adopted as a classifier. Vehicle appearance changed by imaging conditions such as time, weather and so on, and GMM parameters are also changed by imaging conditions. To recognize vehicle accuratel...
Saved in:
Published in: | Journal of advanced computational intelligence and intelligent informatics 2009-07, Vol.13 (4), p.463-469 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have proposed a technique to recognize a vehicle. In this technique, Gaussian Mixture Model (GMM) is adopted as a classifier. Vehicle appearance changed by imaging conditions such as time, weather and so on, and GMM parameters are also changed by imaging conditions. To recognize vehicle accurately, we have prepared some GMM tuned with the imaging conditions. On the other hand, it is impossible to prepare GMM because imaging condition changes successively. In this paper, we propose a method for estimating GMM and for training GMM parameters which reflect the successive change of imaging condition. Experimental results show that GMM parameters are estimated accurately and training of GMM are speeded up by proposed method. |
---|---|
ISSN: | 1343-0130 1883-8014 |
DOI: | 10.20965/jaciii.2009.p0463 |