Loading…

Fuzzy few-Nearest Neighbor Method with a Few Samples for Personal Authentication

The Fuzzy few-Nearest Neighbor (Ff-NN) method, which is an extended version of k -Nearest Neighbor algorithm ( k -NN) and one of case-based learning methods, is proposed. Ff-NN intends to achieve stable identification performance even if the number of learning samples is as small as two. Applied to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advanced computational intelligence and intelligent informatics 2010-03, Vol.14 (2), p.167-178
Main Authors: Arai, Yoshinori, Lien, Nguyen Thi Huong, Ishigaki, Kazuma, Satoh, Hiroyuki, Hayashi, Teruhiko, Dong, Fangyan, Hirota, Kaoru
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-5ea2bf212aa70f49a59d15f99dd122ebc9f982db2bc988e159b8d55d60ece873
cites cdi_FETCH-LOGICAL-c291t-5ea2bf212aa70f49a59d15f99dd122ebc9f982db2bc988e159b8d55d60ece873
container_end_page 178
container_issue 2
container_start_page 167
container_title Journal of advanced computational intelligence and intelligent informatics
container_volume 14
creator Arai, Yoshinori
Lien, Nguyen Thi Huong
Ishigaki, Kazuma
Satoh, Hiroyuki
Hayashi, Teruhiko
Dong, Fangyan
Hirota, Kaoru
description The Fuzzy few-Nearest Neighbor (Ff-NN) method, which is an extended version of k -Nearest Neighbor algorithm ( k -NN) and one of case-based learning methods, is proposed. Ff-NN intends to achieve stable identification performance even if the number of learning samples is as small as two. Applied to personal authentication systems such as enter/exit authorizations, Ff-NN reduces the user dictionary creation burden. Using 26 kinds of feature (face images and voices) data from 66 test objects, we conducted experiments on a PC to verify the feasibility of our proposed method. Forced recognition rate of conventional single-NN is 79.2% (standard deviation 2.83), and that of Ff-NN is 87.6% (SD 1.97). Recognition rates of dictionary data with 14, 17, and 26 features, are 90.6%, 92.5%, and 97.5%, respectively. We collect a very small number of nonintrusive samples so that two or more features are used to improve recognition performance. We present applicability of this method to personal authentication systems through experiments using 66 registrants, corresponding to 30 households.
doi_str_mv 10.20965/jaciii.2010.p0167
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_20965_jaciii_2010_p0167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_20965_jaciii_2010_p0167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5ea2bf212aa70f49a59d15f99dd122ebc9f982db2bc988e159b8d55d60ece873</originalsourceid><addsrcrecordid>eNotkNFKwzAUhoMoOOZewKu8QDRJmza5HMOqMOfA3Ze0ObEZXVuSjLI9vd3m1fnO_8N_8SH0zOgLpyoTr3tdO-emZ0oGyrL8Ds2YlAmRlKX3EydpQihL6CNahLCndGKe0ZTN0LY4ns8nbGEkG9AeQsQbcL9N1Xv8BbHpDR5dbLDGBYz4Rx-GFgK2U7sFH_pOt3h5jA100dU6ur57Qg9WtwEW_3eOdsXbbvVB1t_vn6vlmtRcsUgEaF5ZzrjWObWp0kIZJqxSxjDOoaqVVZKbik8kJTChKmmEMBmFGmSezBG_zda-D8GDLQfvDtqfSkbLq5XyZqW8WCmvVpI_u89YLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fuzzy few-Nearest Neighbor Method with a Few Samples for Personal Authentication</title><source>DOAJ Directory of Open Access Journals</source><creator>Arai, Yoshinori ; Lien, Nguyen Thi Huong ; Ishigaki, Kazuma ; Satoh, Hiroyuki ; Hayashi, Teruhiko ; Dong, Fangyan ; Hirota, Kaoru</creator><creatorcontrib>Arai, Yoshinori ; Lien, Nguyen Thi Huong ; Ishigaki, Kazuma ; Satoh, Hiroyuki ; Hayashi, Teruhiko ; Dong, Fangyan ; Hirota, Kaoru ; Dept. Eng., C.S., Tokyo Polytechnic Univ ; Schlumberger K.K ; Soliton Systems K.K ; Hitachi Automotive Systems Co., Ltd ; Dept. C.I. &amp; S.S., Tokyo Institute of Technology</creatorcontrib><description>The Fuzzy few-Nearest Neighbor (Ff-NN) method, which is an extended version of k -Nearest Neighbor algorithm ( k -NN) and one of case-based learning methods, is proposed. Ff-NN intends to achieve stable identification performance even if the number of learning samples is as small as two. Applied to personal authentication systems such as enter/exit authorizations, Ff-NN reduces the user dictionary creation burden. Using 26 kinds of feature (face images and voices) data from 66 test objects, we conducted experiments on a PC to verify the feasibility of our proposed method. Forced recognition rate of conventional single-NN is 79.2% (standard deviation 2.83), and that of Ff-NN is 87.6% (SD 1.97). Recognition rates of dictionary data with 14, 17, and 26 features, are 90.6%, 92.5%, and 97.5%, respectively. We collect a very small number of nonintrusive samples so that two or more features are used to improve recognition performance. We present applicability of this method to personal authentication systems through experiments using 66 registrants, corresponding to 30 households.</description><identifier>ISSN: 1343-0130</identifier><identifier>EISSN: 1883-8014</identifier><identifier>DOI: 10.20965/jaciii.2010.p0167</identifier><language>eng</language><ispartof>Journal of advanced computational intelligence and intelligent informatics, 2010-03, Vol.14 (2), p.167-178</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5ea2bf212aa70f49a59d15f99dd122ebc9f982db2bc988e159b8d55d60ece873</citedby><cites>FETCH-LOGICAL-c291t-5ea2bf212aa70f49a59d15f99dd122ebc9f982db2bc988e159b8d55d60ece873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Arai, Yoshinori</creatorcontrib><creatorcontrib>Lien, Nguyen Thi Huong</creatorcontrib><creatorcontrib>Ishigaki, Kazuma</creatorcontrib><creatorcontrib>Satoh, Hiroyuki</creatorcontrib><creatorcontrib>Hayashi, Teruhiko</creatorcontrib><creatorcontrib>Dong, Fangyan</creatorcontrib><creatorcontrib>Hirota, Kaoru</creatorcontrib><creatorcontrib>Dept. Eng., C.S., Tokyo Polytechnic Univ</creatorcontrib><creatorcontrib>Schlumberger K.K</creatorcontrib><creatorcontrib>Soliton Systems K.K</creatorcontrib><creatorcontrib>Hitachi Automotive Systems Co., Ltd</creatorcontrib><creatorcontrib>Dept. C.I. &amp; S.S., Tokyo Institute of Technology</creatorcontrib><title>Fuzzy few-Nearest Neighbor Method with a Few Samples for Personal Authentication</title><title>Journal of advanced computational intelligence and intelligent informatics</title><description>The Fuzzy few-Nearest Neighbor (Ff-NN) method, which is an extended version of k -Nearest Neighbor algorithm ( k -NN) and one of case-based learning methods, is proposed. Ff-NN intends to achieve stable identification performance even if the number of learning samples is as small as two. Applied to personal authentication systems such as enter/exit authorizations, Ff-NN reduces the user dictionary creation burden. Using 26 kinds of feature (face images and voices) data from 66 test objects, we conducted experiments on a PC to verify the feasibility of our proposed method. Forced recognition rate of conventional single-NN is 79.2% (standard deviation 2.83), and that of Ff-NN is 87.6% (SD 1.97). Recognition rates of dictionary data with 14, 17, and 26 features, are 90.6%, 92.5%, and 97.5%, respectively. We collect a very small number of nonintrusive samples so that two or more features are used to improve recognition performance. We present applicability of this method to personal authentication systems through experiments using 66 registrants, corresponding to 30 households.</description><issn>1343-0130</issn><issn>1883-8014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotkNFKwzAUhoMoOOZewKu8QDRJmza5HMOqMOfA3Ze0ObEZXVuSjLI9vd3m1fnO_8N_8SH0zOgLpyoTr3tdO-emZ0oGyrL8Ds2YlAmRlKX3EydpQihL6CNahLCndGKe0ZTN0LY4ns8nbGEkG9AeQsQbcL9N1Xv8BbHpDR5dbLDGBYz4Rx-GFgK2U7sFH_pOt3h5jA100dU6ur57Qg9WtwEW_3eOdsXbbvVB1t_vn6vlmtRcsUgEaF5ZzrjWObWp0kIZJqxSxjDOoaqVVZKbik8kJTChKmmEMBmFGmSezBG_zda-D8GDLQfvDtqfSkbLq5XyZqW8WCmvVpI_u89YLA</recordid><startdate>20100320</startdate><enddate>20100320</enddate><creator>Arai, Yoshinori</creator><creator>Lien, Nguyen Thi Huong</creator><creator>Ishigaki, Kazuma</creator><creator>Satoh, Hiroyuki</creator><creator>Hayashi, Teruhiko</creator><creator>Dong, Fangyan</creator><creator>Hirota, Kaoru</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100320</creationdate><title>Fuzzy few-Nearest Neighbor Method with a Few Samples for Personal Authentication</title><author>Arai, Yoshinori ; Lien, Nguyen Thi Huong ; Ishigaki, Kazuma ; Satoh, Hiroyuki ; Hayashi, Teruhiko ; Dong, Fangyan ; Hirota, Kaoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5ea2bf212aa70f49a59d15f99dd122ebc9f982db2bc988e159b8d55d60ece873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arai, Yoshinori</creatorcontrib><creatorcontrib>Lien, Nguyen Thi Huong</creatorcontrib><creatorcontrib>Ishigaki, Kazuma</creatorcontrib><creatorcontrib>Satoh, Hiroyuki</creatorcontrib><creatorcontrib>Hayashi, Teruhiko</creatorcontrib><creatorcontrib>Dong, Fangyan</creatorcontrib><creatorcontrib>Hirota, Kaoru</creatorcontrib><creatorcontrib>Dept. Eng., C.S., Tokyo Polytechnic Univ</creatorcontrib><creatorcontrib>Schlumberger K.K</creatorcontrib><creatorcontrib>Soliton Systems K.K</creatorcontrib><creatorcontrib>Hitachi Automotive Systems Co., Ltd</creatorcontrib><creatorcontrib>Dept. C.I. &amp; S.S., Tokyo Institute of Technology</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arai, Yoshinori</au><au>Lien, Nguyen Thi Huong</au><au>Ishigaki, Kazuma</au><au>Satoh, Hiroyuki</au><au>Hayashi, Teruhiko</au><au>Dong, Fangyan</au><au>Hirota, Kaoru</au><aucorp>Dept. Eng., C.S., Tokyo Polytechnic Univ</aucorp><aucorp>Schlumberger K.K</aucorp><aucorp>Soliton Systems K.K</aucorp><aucorp>Hitachi Automotive Systems Co., Ltd</aucorp><aucorp>Dept. C.I. &amp; S.S., Tokyo Institute of Technology</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy few-Nearest Neighbor Method with a Few Samples for Personal Authentication</atitle><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle><date>2010-03-20</date><risdate>2010</risdate><volume>14</volume><issue>2</issue><spage>167</spage><epage>178</epage><pages>167-178</pages><issn>1343-0130</issn><eissn>1883-8014</eissn><abstract>The Fuzzy few-Nearest Neighbor (Ff-NN) method, which is an extended version of k -Nearest Neighbor algorithm ( k -NN) and one of case-based learning methods, is proposed. Ff-NN intends to achieve stable identification performance even if the number of learning samples is as small as two. Applied to personal authentication systems such as enter/exit authorizations, Ff-NN reduces the user dictionary creation burden. Using 26 kinds of feature (face images and voices) data from 66 test objects, we conducted experiments on a PC to verify the feasibility of our proposed method. Forced recognition rate of conventional single-NN is 79.2% (standard deviation 2.83), and that of Ff-NN is 87.6% (SD 1.97). Recognition rates of dictionary data with 14, 17, and 26 features, are 90.6%, 92.5%, and 97.5%, respectively. We collect a very small number of nonintrusive samples so that two or more features are used to improve recognition performance. We present applicability of this method to personal authentication systems through experiments using 66 registrants, corresponding to 30 households.</abstract><doi>10.20965/jaciii.2010.p0167</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1343-0130
ispartof Journal of advanced computational intelligence and intelligent informatics, 2010-03, Vol.14 (2), p.167-178
issn 1343-0130
1883-8014
language eng
recordid cdi_crossref_primary_10_20965_jaciii_2010_p0167
source DOAJ Directory of Open Access Journals
title Fuzzy few-Nearest Neighbor Method with a Few Samples for Personal Authentication
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20few-Nearest%20Neighbor%20Method%20with%20a%20Few%20Samples%20for%20Personal%20Authentication&rft.jtitle=Journal%20of%20advanced%20computational%20intelligence%20and%20intelligent%20informatics&rft.au=Arai,%20Yoshinori&rft.aucorp=Dept.%20Eng.,%20C.S.,%20Tokyo%20Polytechnic%20Univ&rft.date=2010-03-20&rft.volume=14&rft.issue=2&rft.spage=167&rft.epage=178&rft.pages=167-178&rft.issn=1343-0130&rft.eissn=1883-8014&rft_id=info:doi/10.20965/jaciii.2010.p0167&rft_dat=%3Ccrossref%3E10_20965_jaciii_2010_p0167%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-5ea2bf212aa70f49a59d15f99dd122ebc9f982db2bc988e159b8d55d60ece873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true