Loading…
Fuzzy few-Nearest Neighbor Method with a Few Samples for Personal Authentication
The Fuzzy few-Nearest Neighbor (Ff-NN) method, which is an extended version of k -Nearest Neighbor algorithm ( k -NN) and one of case-based learning methods, is proposed. Ff-NN intends to achieve stable identification performance even if the number of learning samples is as small as two. Applied to...
Saved in:
Published in: | Journal of advanced computational intelligence and intelligent informatics 2010-03, Vol.14 (2), p.167-178 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-5ea2bf212aa70f49a59d15f99dd122ebc9f982db2bc988e159b8d55d60ece873 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-5ea2bf212aa70f49a59d15f99dd122ebc9f982db2bc988e159b8d55d60ece873 |
container_end_page | 178 |
container_issue | 2 |
container_start_page | 167 |
container_title | Journal of advanced computational intelligence and intelligent informatics |
container_volume | 14 |
creator | Arai, Yoshinori Lien, Nguyen Thi Huong Ishigaki, Kazuma Satoh, Hiroyuki Hayashi, Teruhiko Dong, Fangyan Hirota, Kaoru |
description | The Fuzzy few-Nearest Neighbor (Ff-NN) method, which is an extended version of
k
-Nearest Neighbor algorithm (
k
-NN) and one of case-based learning methods, is proposed. Ff-NN intends to achieve stable identification performance even if the number of learning samples is as small as two. Applied to personal authentication systems such as enter/exit authorizations, Ff-NN reduces the user dictionary creation burden. Using 26 kinds of feature (face images and voices) data from 66 test objects, we conducted experiments on a PC to verify the feasibility of our proposed method. Forced recognition rate of conventional single-NN is 79.2% (standard deviation 2.83), and that of Ff-NN is 87.6% (SD 1.97). Recognition rates of dictionary data with 14, 17, and 26 features, are 90.6%, 92.5%, and 97.5%, respectively. We collect a very small number of nonintrusive samples so that two or more features are used to improve recognition performance. We present applicability of this method to personal authentication systems through experiments using 66 registrants, corresponding to 30 households. |
doi_str_mv | 10.20965/jaciii.2010.p0167 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_20965_jaciii_2010_p0167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_20965_jaciii_2010_p0167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5ea2bf212aa70f49a59d15f99dd122ebc9f982db2bc988e159b8d55d60ece873</originalsourceid><addsrcrecordid>eNotkNFKwzAUhoMoOOZewKu8QDRJmza5HMOqMOfA3Ze0ObEZXVuSjLI9vd3m1fnO_8N_8SH0zOgLpyoTr3tdO-emZ0oGyrL8Ds2YlAmRlKX3EydpQihL6CNahLCndGKe0ZTN0LY4ns8nbGEkG9AeQsQbcL9N1Xv8BbHpDR5dbLDGBYz4Rx-GFgK2U7sFH_pOt3h5jA100dU6ur57Qg9WtwEW_3eOdsXbbvVB1t_vn6vlmtRcsUgEaF5ZzrjWObWp0kIZJqxSxjDOoaqVVZKbik8kJTChKmmEMBmFGmSezBG_zda-D8GDLQfvDtqfSkbLq5XyZqW8WCmvVpI_u89YLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fuzzy few-Nearest Neighbor Method with a Few Samples for Personal Authentication</title><source>DOAJ Directory of Open Access Journals</source><creator>Arai, Yoshinori ; Lien, Nguyen Thi Huong ; Ishigaki, Kazuma ; Satoh, Hiroyuki ; Hayashi, Teruhiko ; Dong, Fangyan ; Hirota, Kaoru</creator><creatorcontrib>Arai, Yoshinori ; Lien, Nguyen Thi Huong ; Ishigaki, Kazuma ; Satoh, Hiroyuki ; Hayashi, Teruhiko ; Dong, Fangyan ; Hirota, Kaoru ; Dept. Eng., C.S., Tokyo Polytechnic Univ ; Schlumberger K.K ; Soliton Systems K.K ; Hitachi Automotive Systems Co., Ltd ; Dept. C.I. & S.S., Tokyo Institute of Technology</creatorcontrib><description>The Fuzzy few-Nearest Neighbor (Ff-NN) method, which is an extended version of
k
-Nearest Neighbor algorithm (
k
-NN) and one of case-based learning methods, is proposed. Ff-NN intends to achieve stable identification performance even if the number of learning samples is as small as two. Applied to personal authentication systems such as enter/exit authorizations, Ff-NN reduces the user dictionary creation burden. Using 26 kinds of feature (face images and voices) data from 66 test objects, we conducted experiments on a PC to verify the feasibility of our proposed method. Forced recognition rate of conventional single-NN is 79.2% (standard deviation 2.83), and that of Ff-NN is 87.6% (SD 1.97). Recognition rates of dictionary data with 14, 17, and 26 features, are 90.6%, 92.5%, and 97.5%, respectively. We collect a very small number of nonintrusive samples so that two or more features are used to improve recognition performance. We present applicability of this method to personal authentication systems through experiments using 66 registrants, corresponding to 30 households.</description><identifier>ISSN: 1343-0130</identifier><identifier>EISSN: 1883-8014</identifier><identifier>DOI: 10.20965/jaciii.2010.p0167</identifier><language>eng</language><ispartof>Journal of advanced computational intelligence and intelligent informatics, 2010-03, Vol.14 (2), p.167-178</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5ea2bf212aa70f49a59d15f99dd122ebc9f982db2bc988e159b8d55d60ece873</citedby><cites>FETCH-LOGICAL-c291t-5ea2bf212aa70f49a59d15f99dd122ebc9f982db2bc988e159b8d55d60ece873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Arai, Yoshinori</creatorcontrib><creatorcontrib>Lien, Nguyen Thi Huong</creatorcontrib><creatorcontrib>Ishigaki, Kazuma</creatorcontrib><creatorcontrib>Satoh, Hiroyuki</creatorcontrib><creatorcontrib>Hayashi, Teruhiko</creatorcontrib><creatorcontrib>Dong, Fangyan</creatorcontrib><creatorcontrib>Hirota, Kaoru</creatorcontrib><creatorcontrib>Dept. Eng., C.S., Tokyo Polytechnic Univ</creatorcontrib><creatorcontrib>Schlumberger K.K</creatorcontrib><creatorcontrib>Soliton Systems K.K</creatorcontrib><creatorcontrib>Hitachi Automotive Systems Co., Ltd</creatorcontrib><creatorcontrib>Dept. C.I. & S.S., Tokyo Institute of Technology</creatorcontrib><title>Fuzzy few-Nearest Neighbor Method with a Few Samples for Personal Authentication</title><title>Journal of advanced computational intelligence and intelligent informatics</title><description>The Fuzzy few-Nearest Neighbor (Ff-NN) method, which is an extended version of
k
-Nearest Neighbor algorithm (
k
-NN) and one of case-based learning methods, is proposed. Ff-NN intends to achieve stable identification performance even if the number of learning samples is as small as two. Applied to personal authentication systems such as enter/exit authorizations, Ff-NN reduces the user dictionary creation burden. Using 26 kinds of feature (face images and voices) data from 66 test objects, we conducted experiments on a PC to verify the feasibility of our proposed method. Forced recognition rate of conventional single-NN is 79.2% (standard deviation 2.83), and that of Ff-NN is 87.6% (SD 1.97). Recognition rates of dictionary data with 14, 17, and 26 features, are 90.6%, 92.5%, and 97.5%, respectively. We collect a very small number of nonintrusive samples so that two or more features are used to improve recognition performance. We present applicability of this method to personal authentication systems through experiments using 66 registrants, corresponding to 30 households.</description><issn>1343-0130</issn><issn>1883-8014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotkNFKwzAUhoMoOOZewKu8QDRJmza5HMOqMOfA3Ze0ObEZXVuSjLI9vd3m1fnO_8N_8SH0zOgLpyoTr3tdO-emZ0oGyrL8Ds2YlAmRlKX3EydpQihL6CNahLCndGKe0ZTN0LY4ns8nbGEkG9AeQsQbcL9N1Xv8BbHpDR5dbLDGBYz4Rx-GFgK2U7sFH_pOt3h5jA100dU6ur57Qg9WtwEW_3eOdsXbbvVB1t_vn6vlmtRcsUgEaF5ZzrjWObWp0kIZJqxSxjDOoaqVVZKbik8kJTChKmmEMBmFGmSezBG_zda-D8GDLQfvDtqfSkbLq5XyZqW8WCmvVpI_u89YLA</recordid><startdate>20100320</startdate><enddate>20100320</enddate><creator>Arai, Yoshinori</creator><creator>Lien, Nguyen Thi Huong</creator><creator>Ishigaki, Kazuma</creator><creator>Satoh, Hiroyuki</creator><creator>Hayashi, Teruhiko</creator><creator>Dong, Fangyan</creator><creator>Hirota, Kaoru</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100320</creationdate><title>Fuzzy few-Nearest Neighbor Method with a Few Samples for Personal Authentication</title><author>Arai, Yoshinori ; Lien, Nguyen Thi Huong ; Ishigaki, Kazuma ; Satoh, Hiroyuki ; Hayashi, Teruhiko ; Dong, Fangyan ; Hirota, Kaoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5ea2bf212aa70f49a59d15f99dd122ebc9f982db2bc988e159b8d55d60ece873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arai, Yoshinori</creatorcontrib><creatorcontrib>Lien, Nguyen Thi Huong</creatorcontrib><creatorcontrib>Ishigaki, Kazuma</creatorcontrib><creatorcontrib>Satoh, Hiroyuki</creatorcontrib><creatorcontrib>Hayashi, Teruhiko</creatorcontrib><creatorcontrib>Dong, Fangyan</creatorcontrib><creatorcontrib>Hirota, Kaoru</creatorcontrib><creatorcontrib>Dept. Eng., C.S., Tokyo Polytechnic Univ</creatorcontrib><creatorcontrib>Schlumberger K.K</creatorcontrib><creatorcontrib>Soliton Systems K.K</creatorcontrib><creatorcontrib>Hitachi Automotive Systems Co., Ltd</creatorcontrib><creatorcontrib>Dept. C.I. & S.S., Tokyo Institute of Technology</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arai, Yoshinori</au><au>Lien, Nguyen Thi Huong</au><au>Ishigaki, Kazuma</au><au>Satoh, Hiroyuki</au><au>Hayashi, Teruhiko</au><au>Dong, Fangyan</au><au>Hirota, Kaoru</au><aucorp>Dept. Eng., C.S., Tokyo Polytechnic Univ</aucorp><aucorp>Schlumberger K.K</aucorp><aucorp>Soliton Systems K.K</aucorp><aucorp>Hitachi Automotive Systems Co., Ltd</aucorp><aucorp>Dept. C.I. & S.S., Tokyo Institute of Technology</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy few-Nearest Neighbor Method with a Few Samples for Personal Authentication</atitle><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle><date>2010-03-20</date><risdate>2010</risdate><volume>14</volume><issue>2</issue><spage>167</spage><epage>178</epage><pages>167-178</pages><issn>1343-0130</issn><eissn>1883-8014</eissn><abstract>The Fuzzy few-Nearest Neighbor (Ff-NN) method, which is an extended version of
k
-Nearest Neighbor algorithm (
k
-NN) and one of case-based learning methods, is proposed. Ff-NN intends to achieve stable identification performance even if the number of learning samples is as small as two. Applied to personal authentication systems such as enter/exit authorizations, Ff-NN reduces the user dictionary creation burden. Using 26 kinds of feature (face images and voices) data from 66 test objects, we conducted experiments on a PC to verify the feasibility of our proposed method. Forced recognition rate of conventional single-NN is 79.2% (standard deviation 2.83), and that of Ff-NN is 87.6% (SD 1.97). Recognition rates of dictionary data with 14, 17, and 26 features, are 90.6%, 92.5%, and 97.5%, respectively. We collect a very small number of nonintrusive samples so that two or more features are used to improve recognition performance. We present applicability of this method to personal authentication systems through experiments using 66 registrants, corresponding to 30 households.</abstract><doi>10.20965/jaciii.2010.p0167</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1343-0130 |
ispartof | Journal of advanced computational intelligence and intelligent informatics, 2010-03, Vol.14 (2), p.167-178 |
issn | 1343-0130 1883-8014 |
language | eng |
recordid | cdi_crossref_primary_10_20965_jaciii_2010_p0167 |
source | DOAJ Directory of Open Access Journals |
title | Fuzzy few-Nearest Neighbor Method with a Few Samples for Personal Authentication |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20few-Nearest%20Neighbor%20Method%20with%20a%20Few%20Samples%20for%20Personal%20Authentication&rft.jtitle=Journal%20of%20advanced%20computational%20intelligence%20and%20intelligent%20informatics&rft.au=Arai,%20Yoshinori&rft.aucorp=Dept.%20Eng.,%20C.S.,%20Tokyo%20Polytechnic%20Univ&rft.date=2010-03-20&rft.volume=14&rft.issue=2&rft.spage=167&rft.epage=178&rft.pages=167-178&rft.issn=1343-0130&rft.eissn=1883-8014&rft_id=info:doi/10.20965/jaciii.2010.p0167&rft_dat=%3Ccrossref%3E10_20965_jaciii_2010_p0167%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-5ea2bf212aa70f49a59d15f99dd122ebc9f982db2bc988e159b8d55d60ece873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |