Loading…
A Two-Phase Complete Algorithm for Multi-Objective Distributed Constraint Optimization
A Distributed Constraint Optimization Problem (DCOP) is a fundamental problem that can formalize various applications related to multi-agent cooperation. Many application problems in multi-agent systems can be formalized as DCOPs. However, many real world optimization problems involve multiple crite...
Saved in:
Published in: | Journal of advanced computational intelligence and intelligent informatics 2014-07, Vol.18 (4), p.573-580 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A Distributed Constraint Optimization Problem (DCOP) is a fundamental problem that can formalize various applications related to multi-agent cooperation. Many application problems in multi-agent systems can be formalized as DCOPs. However, many real world optimization problems involve multiple criteria that should be considered separately and optimized simultaneously. A Multi-Objective Distributed Constraint Optimization Problem (MO-DCOP) is an extension of a mono-objective DCOP. Compared to DCOPs, there exists few works on MO-DCOPs. In this paper, we develop a novel complete algorithm for solving an MO-DCOP. This algorithm utilizes a widely used method called Pareto Local Search (PLS) to generate an approximation of the Pareto front. Then, the obtained information is used to guide the search thresholds in a Branch and Bound algorithm. In the evaluations, we evaluate the runtime of our algorithm and show empirically that using a Pareto front approximation obtained by a PLS algorithm allows to significantly speed-up the search in a Branch and Bound algorithm. |
---|---|
ISSN: | 1343-0130 1883-8014 |
DOI: | 10.20965/jaciii.2014.p0573 |