Loading…

Fuzzy Multisets in Granular Hierarchical Structures Generated from Free Monoids

Fuzzy multisets defined by Yager take multisets on interval (0,1] as grades of membership. As Miyamoto later pointed out, the fuzzy multiset operations originally defined by Yager are not compatible with those of fuzzy sets as special cases. Miyamoto proposed different definitions for fuzzy multiset...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advanced computational intelligence and intelligent informatics 2015-01, Vol.19 (1), p.43-50
Main Authors: Murai, Tetsuya, Miyamoto, Sadaaki, Inuiguchi, Masahiro, Kudo, Yasuo, Akama, Seiki
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4003-ecaa52d673854ff33a441471752c24b11930a18cb9f41f656ed08d6f2da320853
cites cdi_FETCH-LOGICAL-c4003-ecaa52d673854ff33a441471752c24b11930a18cb9f41f656ed08d6f2da320853
container_end_page 50
container_issue 1
container_start_page 43
container_title Journal of advanced computational intelligence and intelligent informatics
container_volume 19
creator Murai, Tetsuya
Miyamoto, Sadaaki
Inuiguchi, Masahiro
Kudo, Yasuo
Akama, Seiki
description Fuzzy multisets defined by Yager take multisets on interval (0,1] as grades of membership. As Miyamoto later pointed out, the fuzzy multiset operations originally defined by Yager are not compatible with those of fuzzy sets as special cases. Miyamoto proposed different definitions for fuzzy multiset operations. This paper focuses on the two definitions of fuzzy multiset operations, one by Yager and the other by Miyamoto. It examines their differences in the framework of granular hierarchical structures generated from the free monoids as proposed in our previous papers. In order to define basic order between multisets on interval (0,1], Yager uses the natural order on the range N , the set of natural numbers, whereas Miyamoto newly introduces an order generated from both domain (0,1] and range N through the notion of cuts.
doi_str_mv 10.20965/jaciii.2015.p0043
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_20965_jaciii_2015_p0043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_20965_jaciii_2015_p0043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4003-ecaa52d673854ff33a441471752c24b11930a18cb9f41f656ed08d6f2da320853</originalsourceid><addsrcrecordid>eNotkMFuwjAQRK2qlYooP9CTfyB012snzrFCBSqBOLQ9R8axVaOQIDs5wNc3BU7zRiPN4TH2ijAXUObq7WBsCGEsqOYnAEkPbIJaU6YB5ePIJCkDJHhms5QOACOLHCRO2G45XC5nvh2aPiTXJx5avoqmHRoT-Tq4aKL9DdY0_KuPg-2H6BJfuXYceldzH7sjX0bn-LZru1CnF_bkTZPc7J5T9rP8-F6ss81u9bl432RWAlDmrDFK1HlBWknviYyUKAsslLBC7hFLAoPa7ksv0ecqdzXoOveiNiRAK5oycfu1sUspOl-dYjiaeK4QqquV6mal-rdSXa3QH5uDVv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fuzzy Multisets in Granular Hierarchical Structures Generated from Free Monoids</title><source>DOAJ Directory of Open Access Journals</source><creator>Murai, Tetsuya ; Miyamoto, Sadaaki ; Inuiguchi, Masahiro ; Kudo, Yasuo ; Akama, Seiki</creator><creatorcontrib>Murai, Tetsuya ; Miyamoto, Sadaaki ; Inuiguchi, Masahiro ; Kudo, Yasuo ; Akama, Seiki ; Department of Computer Science and Systems Engineering, Muroran Institute of Technology, 27-1 Miumoto, Muroran, Hokkaido 050-8585, Japan ; Graduate School of Information Science and Technologies, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan ; Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan ; Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan ; C-Republic, 1-20-1 Higashi-Yurigaoka, Asoh-ku, Kawasaki, Kanagawa 215-0012, Japan</creatorcontrib><description>Fuzzy multisets defined by Yager take multisets on interval (0,1] as grades of membership. As Miyamoto later pointed out, the fuzzy multiset operations originally defined by Yager are not compatible with those of fuzzy sets as special cases. Miyamoto proposed different definitions for fuzzy multiset operations. This paper focuses on the two definitions of fuzzy multiset operations, one by Yager and the other by Miyamoto. It examines their differences in the framework of granular hierarchical structures generated from the free monoids as proposed in our previous papers. In order to define basic order between multisets on interval (0,1], Yager uses the natural order on the range N , the set of natural numbers, whereas Miyamoto newly introduces an order generated from both domain (0,1] and range N through the notion of cuts.</description><identifier>ISSN: 1343-0130</identifier><identifier>EISSN: 1883-8014</identifier><identifier>DOI: 10.20965/jaciii.2015.p0043</identifier><language>eng</language><ispartof>Journal of advanced computational intelligence and intelligent informatics, 2015-01, Vol.19 (1), p.43-50</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4003-ecaa52d673854ff33a441471752c24b11930a18cb9f41f656ed08d6f2da320853</citedby><cites>FETCH-LOGICAL-c4003-ecaa52d673854ff33a441471752c24b11930a18cb9f41f656ed08d6f2da320853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Murai, Tetsuya</creatorcontrib><creatorcontrib>Miyamoto, Sadaaki</creatorcontrib><creatorcontrib>Inuiguchi, Masahiro</creatorcontrib><creatorcontrib>Kudo, Yasuo</creatorcontrib><creatorcontrib>Akama, Seiki</creatorcontrib><creatorcontrib>Department of Computer Science and Systems Engineering, Muroran Institute of Technology, 27-1 Miumoto, Muroran, Hokkaido 050-8585, Japan</creatorcontrib><creatorcontrib>Graduate School of Information Science and Technologies, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan</creatorcontrib><creatorcontrib>Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan</creatorcontrib><creatorcontrib>Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan</creatorcontrib><creatorcontrib>C-Republic, 1-20-1 Higashi-Yurigaoka, Asoh-ku, Kawasaki, Kanagawa 215-0012, Japan</creatorcontrib><title>Fuzzy Multisets in Granular Hierarchical Structures Generated from Free Monoids</title><title>Journal of advanced computational intelligence and intelligent informatics</title><description>Fuzzy multisets defined by Yager take multisets on interval (0,1] as grades of membership. As Miyamoto later pointed out, the fuzzy multiset operations originally defined by Yager are not compatible with those of fuzzy sets as special cases. Miyamoto proposed different definitions for fuzzy multiset operations. This paper focuses on the two definitions of fuzzy multiset operations, one by Yager and the other by Miyamoto. It examines their differences in the framework of granular hierarchical structures generated from the free monoids as proposed in our previous papers. In order to define basic order between multisets on interval (0,1], Yager uses the natural order on the range N , the set of natural numbers, whereas Miyamoto newly introduces an order generated from both domain (0,1] and range N through the notion of cuts.</description><issn>1343-0130</issn><issn>1883-8014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkMFuwjAQRK2qlYooP9CTfyB012snzrFCBSqBOLQ9R8axVaOQIDs5wNc3BU7zRiPN4TH2ijAXUObq7WBsCGEsqOYnAEkPbIJaU6YB5ePIJCkDJHhms5QOACOLHCRO2G45XC5nvh2aPiTXJx5avoqmHRoT-Tq4aKL9DdY0_KuPg-2H6BJfuXYceldzH7sjX0bn-LZru1CnF_bkTZPc7J5T9rP8-F6ss81u9bl432RWAlDmrDFK1HlBWknviYyUKAsslLBC7hFLAoPa7ksv0ecqdzXoOveiNiRAK5oycfu1sUspOl-dYjiaeK4QqquV6mal-rdSXa3QH5uDVv8</recordid><startdate>20150120</startdate><enddate>20150120</enddate><creator>Murai, Tetsuya</creator><creator>Miyamoto, Sadaaki</creator><creator>Inuiguchi, Masahiro</creator><creator>Kudo, Yasuo</creator><creator>Akama, Seiki</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150120</creationdate><title>Fuzzy Multisets in Granular Hierarchical Structures Generated from Free Monoids</title><author>Murai, Tetsuya ; Miyamoto, Sadaaki ; Inuiguchi, Masahiro ; Kudo, Yasuo ; Akama, Seiki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4003-ecaa52d673854ff33a441471752c24b11930a18cb9f41f656ed08d6f2da320853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murai, Tetsuya</creatorcontrib><creatorcontrib>Miyamoto, Sadaaki</creatorcontrib><creatorcontrib>Inuiguchi, Masahiro</creatorcontrib><creatorcontrib>Kudo, Yasuo</creatorcontrib><creatorcontrib>Akama, Seiki</creatorcontrib><creatorcontrib>Department of Computer Science and Systems Engineering, Muroran Institute of Technology, 27-1 Miumoto, Muroran, Hokkaido 050-8585, Japan</creatorcontrib><creatorcontrib>Graduate School of Information Science and Technologies, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan</creatorcontrib><creatorcontrib>Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan</creatorcontrib><creatorcontrib>Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan</creatorcontrib><creatorcontrib>C-Republic, 1-20-1 Higashi-Yurigaoka, Asoh-ku, Kawasaki, Kanagawa 215-0012, Japan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murai, Tetsuya</au><au>Miyamoto, Sadaaki</au><au>Inuiguchi, Masahiro</au><au>Kudo, Yasuo</au><au>Akama, Seiki</au><aucorp>Department of Computer Science and Systems Engineering, Muroran Institute of Technology, 27-1 Miumoto, Muroran, Hokkaido 050-8585, Japan</aucorp><aucorp>Graduate School of Information Science and Technologies, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan</aucorp><aucorp>Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan</aucorp><aucorp>Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan</aucorp><aucorp>C-Republic, 1-20-1 Higashi-Yurigaoka, Asoh-ku, Kawasaki, Kanagawa 215-0012, Japan</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Multisets in Granular Hierarchical Structures Generated from Free Monoids</atitle><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle><date>2015-01-20</date><risdate>2015</risdate><volume>19</volume><issue>1</issue><spage>43</spage><epage>50</epage><pages>43-50</pages><issn>1343-0130</issn><eissn>1883-8014</eissn><abstract>Fuzzy multisets defined by Yager take multisets on interval (0,1] as grades of membership. As Miyamoto later pointed out, the fuzzy multiset operations originally defined by Yager are not compatible with those of fuzzy sets as special cases. Miyamoto proposed different definitions for fuzzy multiset operations. This paper focuses on the two definitions of fuzzy multiset operations, one by Yager and the other by Miyamoto. It examines their differences in the framework of granular hierarchical structures generated from the free monoids as proposed in our previous papers. In order to define basic order between multisets on interval (0,1], Yager uses the natural order on the range N , the set of natural numbers, whereas Miyamoto newly introduces an order generated from both domain (0,1] and range N through the notion of cuts.</abstract><doi>10.20965/jaciii.2015.p0043</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1343-0130
ispartof Journal of advanced computational intelligence and intelligent informatics, 2015-01, Vol.19 (1), p.43-50
issn 1343-0130
1883-8014
language eng
recordid cdi_crossref_primary_10_20965_jaciii_2015_p0043
source DOAJ Directory of Open Access Journals
title Fuzzy Multisets in Granular Hierarchical Structures Generated from Free Monoids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A58%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Multisets%20in%20Granular%20Hierarchical%20Structures%20Generated%20from%20Free%20Monoids&rft.jtitle=Journal%20of%20advanced%20computational%20intelligence%20and%20intelligent%20informatics&rft.au=Murai,%20Tetsuya&rft.aucorp=Department%20of%20Computer%20Science%20and%20Systems%20Engineering,%20Muroran%20Institute%20of%20Technology,%2027-1%20Miumoto,%20Muroran,%20Hokkaido%20050-8585,%20Japan&rft.date=2015-01-20&rft.volume=19&rft.issue=1&rft.spage=43&rft.epage=50&rft.pages=43-50&rft.issn=1343-0130&rft.eissn=1883-8014&rft_id=info:doi/10.20965/jaciii.2015.p0043&rft_dat=%3Ccrossref%3E10_20965_jaciii_2015_p0043%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4003-ecaa52d673854ff33a441471752c24b11930a18cb9f41f656ed08d6f2da320853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true