Loading…

AN APPROXIMATE RESOLUTION OF THE PRODUCT WITH A COMPACT FACTOR

For any given approximate resolution p = {pa|a(EA}: X → X =(Xa, Ua, Paa', A) of a topological space X, where X is uniform, all Xa are paracompact, all Ua are locally finite and A is cofinite, and any given compact Hausdorff space Y, the approximate resolution r= p×1={rb = Pa×1|b=(a, φ)∈B}: X×Y...

Full description

Saved in:
Bibliographic Details
Published in:Tsukuba journal of mathematics 1992-06, Vol.16 (1), p.75-84
Main Authors: Matijevic, Vlasta, Uglesic, Nikica
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 84
container_issue 1
container_start_page 75
container_title Tsukuba journal of mathematics
container_volume 16
creator Matijevic, Vlasta
Uglesic, Nikica
description For any given approximate resolution p = {pa|a(EA}: X → X =(Xa, Ua, Paa', A) of a topological space X, where X is uniform, all Xa are paracompact, all Ua are locally finite and A is cofinite, and any given compact Hausdorff space Y, the approximate resolution r= p×1={rb = Pa×1|b=(a, φ)∈B}: X×Y → X×Y = (Xa×Y, Ua×φ[Va], Paa'×1, B) of the product space X×Y is constructed. Here, the indexing set is obtained by means of the set A and certain subfamilies of Φ(a)={φ|φ:Va→Cov(Y)}, a∈A, while the mesh is Va×φ[va] is a stacked covering of Xa over Va.
doi_str_mv 10.21099/tkbjm/1496161831
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_21099_tkbjm_1496161831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43685791</jstor_id><sourcerecordid>43685791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1071-9c58f63f2a902d0c6b67cb83460ec524b5f9752fce3a58602289a284a7b180b23</originalsourceid><addsrcrecordid>eNpFj81Kw0AUhWehYK0-gAthXiD2zm9mNsIQExNIOyEm6C5kxgSslkqmG9--oRXd3MPl8B34ELoj8EAJaL06fLrtbkW4lkQSxcgFWgBTccS1olfoOoQtANdawwI9mg02VVXbt2JtmhTX6Yst26awG2wz3OQpnrunNmnwa9Hk2ODEriszv9l8bH2DLsf-Kwy3v7lEbZY2SR6V9rlITBl5AjGJtBdqlGykvQb6Dl46GXunGJcweEG5E6OOBR39wHqhJFCqdE8V72NHFDjKloicd_20D2Eaxu57-tj1009HoDtJdyfp7l96Zu7PzDYc9tMfwJlUItaEHQE50FBO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AN APPROXIMATE RESOLUTION OF THE PRODUCT WITH A COMPACT FACTOR</title><source>JSTOR</source><creator>Matijevic, Vlasta ; Uglesic, Nikica</creator><creatorcontrib>Matijevic, Vlasta ; Uglesic, Nikica</creatorcontrib><description>For any given approximate resolution p = {pa|a(EA}: X → X =(Xa, Ua, Paa', A) of a topological space X, where X is uniform, all Xa are paracompact, all Ua are locally finite and A is cofinite, and any given compact Hausdorff space Y, the approximate resolution r= p×1={rb = Pa×1|b=(a, φ)∈B}: X×Y → X×Y = (Xa×Y, Ua×φ[Va], Paa'×1, B) of the product space X×Y is constructed. Here, the indexing set is obtained by means of the set A and certain subfamilies of Φ(a)={φ|φ:Va→Cov(Y)}, a∈A, while the mesh is Va×φ[va] is a stacked covering of Xa over Va.</description><identifier>ISSN: 0387-4982</identifier><identifier>DOI: 10.21099/tkbjm/1496161831</identifier><language>eng</language><publisher>Institute of Mathematics, University of Tsukuba</publisher><subject>Hausdorff spaces ; Industrial refining</subject><ispartof>Tsukuba journal of mathematics, 1992-06, Vol.16 (1), p.75-84</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43685791$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43685791$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,58216,58449</link.rule.ids></links><search><creatorcontrib>Matijevic, Vlasta</creatorcontrib><creatorcontrib>Uglesic, Nikica</creatorcontrib><title>AN APPROXIMATE RESOLUTION OF THE PRODUCT WITH A COMPACT FACTOR</title><title>Tsukuba journal of mathematics</title><description>For any given approximate resolution p = {pa|a(EA}: X → X =(Xa, Ua, Paa', A) of a topological space X, where X is uniform, all Xa are paracompact, all Ua are locally finite and A is cofinite, and any given compact Hausdorff space Y, the approximate resolution r= p×1={rb = Pa×1|b=(a, φ)∈B}: X×Y → X×Y = (Xa×Y, Ua×φ[Va], Paa'×1, B) of the product space X×Y is constructed. Here, the indexing set is obtained by means of the set A and certain subfamilies of Φ(a)={φ|φ:Va→Cov(Y)}, a∈A, while the mesh is Va×φ[va] is a stacked covering of Xa over Va.</description><subject>Hausdorff spaces</subject><subject>Industrial refining</subject><issn>0387-4982</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpFj81Kw0AUhWehYK0-gAthXiD2zm9mNsIQExNIOyEm6C5kxgSslkqmG9--oRXd3MPl8B34ELoj8EAJaL06fLrtbkW4lkQSxcgFWgBTccS1olfoOoQtANdawwI9mg02VVXbt2JtmhTX6Yst26awG2wz3OQpnrunNmnwa9Hk2ODEriszv9l8bH2DLsf-Kwy3v7lEbZY2SR6V9rlITBl5AjGJtBdqlGykvQb6Dl46GXunGJcweEG5E6OOBR39wHqhJFCqdE8V72NHFDjKloicd_20D2Eaxu57-tj1009HoDtJdyfp7l96Zu7PzDYc9tMfwJlUItaEHQE50FBO</recordid><startdate>19920601</startdate><enddate>19920601</enddate><creator>Matijevic, Vlasta</creator><creator>Uglesic, Nikica</creator><general>Institute of Mathematics, University of Tsukuba</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920601</creationdate><title>AN APPROXIMATE RESOLUTION OF THE PRODUCT WITH A COMPACT FACTOR</title><author>Matijevic, Vlasta ; Uglesic, Nikica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1071-9c58f63f2a902d0c6b67cb83460ec524b5f9752fce3a58602289a284a7b180b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Hausdorff spaces</topic><topic>Industrial refining</topic><toplevel>online_resources</toplevel><creatorcontrib>Matijevic, Vlasta</creatorcontrib><creatorcontrib>Uglesic, Nikica</creatorcontrib><collection>CrossRef</collection><jtitle>Tsukuba journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matijevic, Vlasta</au><au>Uglesic, Nikica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AN APPROXIMATE RESOLUTION OF THE PRODUCT WITH A COMPACT FACTOR</atitle><jtitle>Tsukuba journal of mathematics</jtitle><date>1992-06-01</date><risdate>1992</risdate><volume>16</volume><issue>1</issue><spage>75</spage><epage>84</epage><pages>75-84</pages><issn>0387-4982</issn><abstract>For any given approximate resolution p = {pa|a(EA}: X → X =(Xa, Ua, Paa', A) of a topological space X, where X is uniform, all Xa are paracompact, all Ua are locally finite and A is cofinite, and any given compact Hausdorff space Y, the approximate resolution r= p×1={rb = Pa×1|b=(a, φ)∈B}: X×Y → X×Y = (Xa×Y, Ua×φ[Va], Paa'×1, B) of the product space X×Y is constructed. Here, the indexing set is obtained by means of the set A and certain subfamilies of Φ(a)={φ|φ:Va→Cov(Y)}, a∈A, while the mesh is Va×φ[va] is a stacked covering of Xa over Va.</abstract><pub>Institute of Mathematics, University of Tsukuba</pub><doi>10.21099/tkbjm/1496161831</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0387-4982
ispartof Tsukuba journal of mathematics, 1992-06, Vol.16 (1), p.75-84
issn 0387-4982
language eng
recordid cdi_crossref_primary_10_21099_tkbjm_1496161831
source JSTOR
subjects Hausdorff spaces
Industrial refining
title AN APPROXIMATE RESOLUTION OF THE PRODUCT WITH A COMPACT FACTOR
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AN%20APPROXIMATE%20RESOLUTION%20OF%20THE%20PRODUCT%20WITH%20A%20COMPACT%20FACTOR&rft.jtitle=Tsukuba%20journal%20of%20mathematics&rft.au=Matijevic,%20Vlasta&rft.date=1992-06-01&rft.volume=16&rft.issue=1&rft.spage=75&rft.epage=84&rft.pages=75-84&rft.issn=0387-4982&rft_id=info:doi/10.21099/tkbjm/1496161831&rft_dat=%3Cjstor_cross%3E43685791%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1071-9c58f63f2a902d0c6b67cb83460ec524b5f9752fce3a58602289a284a7b180b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43685791&rfr_iscdi=true