Loading…
Waste-derived substrates in vertical-flow constructed wetlands for an efficient removal of high-concentration heavy metals
Contamination by heavy metals (HMs) in aquatic ecosystems is a worldwide issue. Therefore, a feasible solution is crucial for underdeveloped and developing countries. Waste-derived materials (WDMs) exhibit unique physical and chemical properties that promote diverse mechanisms for the removal of HMs...
Saved in:
Published in: | Water science and technology 2025-01, Vol.91 (1), p.21 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c178t-2f5686ece70ccb5313cc61b788b62f2a6359ec871b3536f889f0de97916fa4fe3 |
container_end_page | |
container_issue | 1 |
container_start_page | 21 |
container_title | Water science and technology |
container_volume | 91 |
creator | Rabbi, Fahim Muntasir Hasan, Md Kamrul Rahman, Md Alinur Islam, Md Salamoon Shohugh, Pramit Kumar Ahmed, Md Istiak Khan, Md Washim Rafi, Tanvir Rahman, Mohammad Mahfuzur Rahaman, Md Hasibur Zhai, Jun |
description | Contamination by heavy metals (HMs) in aquatic ecosystems is a worldwide issue. Therefore, a feasible solution is crucial for underdeveloped and developing countries. Waste-derived materials (WDMs) exhibit unique physical and chemical properties that promote diverse mechanisms for the removal of HMs in constructed wetlands (CWs). In this study, we aimed to report the removal efficiency of HMs of vertical-flow constructed wetland (VFCW) systems using different WDMs, such as clinker brick (Jhama), eggshells, and date palm fiber (DPF). Synthetic wastewater with high concentrations (3.3-61.8) mg/L of HMs (As, Cr, Cd, Pb, Fe, Zn, Cu, and Ni) was applied to the systems followed by 3 days of hydraulic retention time. The results demonstrate that removal efficiencies of HMs ranged between 94.8 and 98.7% for DPF, 95.4-98.5% for eggshells, and 79.9-92.9% for the Jhama-filled CWs, while the gravel-based systems were capable of 73-87.6% removal. Two macrophytes,
and
were planted in the CWs and exhibited significant accumulation of HMs in their roots. The study reports that WDMs are effective for concentrated HM removal in CWs, and macrophytes demonstrate significant phytoremediation capabilities. The findings of this study will facilitate the economically feasible and efficient design of CWs for effectively treating concentrated HMs in wastewater. |
doi_str_mv | 10.2166/wst.2024.404 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2166_wst_2024_404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3156528506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c178t-2f5686ece70ccb5313cc61b788b62f2a6359ec871b3536f889f0de97916fa4fe3</originalsourceid><addsrcrecordid>eNo9kEtLxDAURoMoOj52riVLF3bMo02TpYgvGHCjuCxpeuNE2mZM0hn01xuZ0dUH9577wT0InVMyZ1SI601Mc0ZYOS9JuYdmVClRqJqzfTQjrOYFZYwfoeMYPwghNS_JITriStKqZGqGvt90TFB0ENwaOhynNqagE0TsRryGkJzRfWF7v8HGj3k3mZS5DaRej13E1gesRwzWOuNgTDjA4Ne6x97ipXtfFvnK5HnudH7ES9DrLzxA0n08RQc2B5zt8gS93t-93D4Wi-eHp9ubRWFoLVPBbCWkAAM1MaatOOXGCNrWUraCWaYFrxQYWdOWV1xYKZUlHahaUWF1aYGfoMtt7yr4zwliagYXDfT5AfBTbDitRMVkRURGr7aoCT7GALZZBTfo8NVQ0vzabrLt5td2k21n_GLXPLUDdP_wn17-AzE_fgs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156528506</pqid></control><display><type>article</type><title>Waste-derived substrates in vertical-flow constructed wetlands for an efficient removal of high-concentration heavy metals</title><source>Alma/SFX Local Collection</source><creator>Rabbi, Fahim Muntasir ; Hasan, Md Kamrul ; Rahman, Md Alinur ; Islam, Md Salamoon ; Shohugh, Pramit Kumar ; Ahmed, Md Istiak ; Khan, Md Washim ; Rafi, Tanvir ; Rahman, Mohammad Mahfuzur ; Rahaman, Md Hasibur ; Zhai, Jun</creator><creatorcontrib>Rabbi, Fahim Muntasir ; Hasan, Md Kamrul ; Rahman, Md Alinur ; Islam, Md Salamoon ; Shohugh, Pramit Kumar ; Ahmed, Md Istiak ; Khan, Md Washim ; Rafi, Tanvir ; Rahman, Mohammad Mahfuzur ; Rahaman, Md Hasibur ; Zhai, Jun</creatorcontrib><description>Contamination by heavy metals (HMs) in aquatic ecosystems is a worldwide issue. Therefore, a feasible solution is crucial for underdeveloped and developing countries. Waste-derived materials (WDMs) exhibit unique physical and chemical properties that promote diverse mechanisms for the removal of HMs in constructed wetlands (CWs). In this study, we aimed to report the removal efficiency of HMs of vertical-flow constructed wetland (VFCW) systems using different WDMs, such as clinker brick (Jhama), eggshells, and date palm fiber (DPF). Synthetic wastewater with high concentrations (3.3-61.8) mg/L of HMs (As, Cr, Cd, Pb, Fe, Zn, Cu, and Ni) was applied to the systems followed by 3 days of hydraulic retention time. The results demonstrate that removal efficiencies of HMs ranged between 94.8 and 98.7% for DPF, 95.4-98.5% for eggshells, and 79.9-92.9% for the Jhama-filled CWs, while the gravel-based systems were capable of 73-87.6% removal. Two macrophytes,
and
were planted in the CWs and exhibited significant accumulation of HMs in their roots. The study reports that WDMs are effective for concentrated HM removal in CWs, and macrophytes demonstrate significant phytoremediation capabilities. The findings of this study will facilitate the economically feasible and efficient design of CWs for effectively treating concentrated HMs in wastewater.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2024.404</identifier><identifier>PMID: 39815429</identifier><language>eng</language><publisher>England</publisher><subject>Metals, Heavy ; Waste Disposal, Fluid - methods ; Wastewater - chemistry ; Water Pollutants, Chemical - chemistry ; Water Purification - methods ; Wetlands</subject><ispartof>Water science and technology, 2025-01, Vol.91 (1), p.21</ispartof><rights>2025 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c178t-2f5686ece70ccb5313cc61b788b62f2a6359ec871b3536f889f0de97916fa4fe3</cites><orcidid>0000-0003-1324-0778 ; 0000-0002-4378-0604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39815429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rabbi, Fahim Muntasir</creatorcontrib><creatorcontrib>Hasan, Md Kamrul</creatorcontrib><creatorcontrib>Rahman, Md Alinur</creatorcontrib><creatorcontrib>Islam, Md Salamoon</creatorcontrib><creatorcontrib>Shohugh, Pramit Kumar</creatorcontrib><creatorcontrib>Ahmed, Md Istiak</creatorcontrib><creatorcontrib>Khan, Md Washim</creatorcontrib><creatorcontrib>Rafi, Tanvir</creatorcontrib><creatorcontrib>Rahman, Mohammad Mahfuzur</creatorcontrib><creatorcontrib>Rahaman, Md Hasibur</creatorcontrib><creatorcontrib>Zhai, Jun</creatorcontrib><title>Waste-derived substrates in vertical-flow constructed wetlands for an efficient removal of high-concentration heavy metals</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>Contamination by heavy metals (HMs) in aquatic ecosystems is a worldwide issue. Therefore, a feasible solution is crucial for underdeveloped and developing countries. Waste-derived materials (WDMs) exhibit unique physical and chemical properties that promote diverse mechanisms for the removal of HMs in constructed wetlands (CWs). In this study, we aimed to report the removal efficiency of HMs of vertical-flow constructed wetland (VFCW) systems using different WDMs, such as clinker brick (Jhama), eggshells, and date palm fiber (DPF). Synthetic wastewater with high concentrations (3.3-61.8) mg/L of HMs (As, Cr, Cd, Pb, Fe, Zn, Cu, and Ni) was applied to the systems followed by 3 days of hydraulic retention time. The results demonstrate that removal efficiencies of HMs ranged between 94.8 and 98.7% for DPF, 95.4-98.5% for eggshells, and 79.9-92.9% for the Jhama-filled CWs, while the gravel-based systems were capable of 73-87.6% removal. Two macrophytes,
and
were planted in the CWs and exhibited significant accumulation of HMs in their roots. The study reports that WDMs are effective for concentrated HM removal in CWs, and macrophytes demonstrate significant phytoremediation capabilities. The findings of this study will facilitate the economically feasible and efficient design of CWs for effectively treating concentrated HMs in wastewater.</description><subject>Metals, Heavy</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Wastewater - chemistry</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water Purification - methods</subject><subject>Wetlands</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAURoMoOj52riVLF3bMo02TpYgvGHCjuCxpeuNE2mZM0hn01xuZ0dUH9577wT0InVMyZ1SI601Mc0ZYOS9JuYdmVClRqJqzfTQjrOYFZYwfoeMYPwghNS_JITriStKqZGqGvt90TFB0ENwaOhynNqagE0TsRryGkJzRfWF7v8HGj3k3mZS5DaRej13E1gesRwzWOuNgTDjA4Ne6x97ipXtfFvnK5HnudH7ES9DrLzxA0n08RQc2B5zt8gS93t-93D4Wi-eHp9ubRWFoLVPBbCWkAAM1MaatOOXGCNrWUraCWaYFrxQYWdOWV1xYKZUlHahaUWF1aYGfoMtt7yr4zwliagYXDfT5AfBTbDitRMVkRURGr7aoCT7GALZZBTfo8NVQ0vzabrLt5td2k21n_GLXPLUDdP_wn17-AzE_fgs</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Rabbi, Fahim Muntasir</creator><creator>Hasan, Md Kamrul</creator><creator>Rahman, Md Alinur</creator><creator>Islam, Md Salamoon</creator><creator>Shohugh, Pramit Kumar</creator><creator>Ahmed, Md Istiak</creator><creator>Khan, Md Washim</creator><creator>Rafi, Tanvir</creator><creator>Rahman, Mohammad Mahfuzur</creator><creator>Rahaman, Md Hasibur</creator><creator>Zhai, Jun</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1324-0778</orcidid><orcidid>https://orcid.org/0000-0002-4378-0604</orcidid></search><sort><creationdate>202501</creationdate><title>Waste-derived substrates in vertical-flow constructed wetlands for an efficient removal of high-concentration heavy metals</title><author>Rabbi, Fahim Muntasir ; Hasan, Md Kamrul ; Rahman, Md Alinur ; Islam, Md Salamoon ; Shohugh, Pramit Kumar ; Ahmed, Md Istiak ; Khan, Md Washim ; Rafi, Tanvir ; Rahman, Mohammad Mahfuzur ; Rahaman, Md Hasibur ; Zhai, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c178t-2f5686ece70ccb5313cc61b788b62f2a6359ec871b3536f889f0de97916fa4fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Metals, Heavy</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Wastewater - chemistry</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water Purification - methods</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rabbi, Fahim Muntasir</creatorcontrib><creatorcontrib>Hasan, Md Kamrul</creatorcontrib><creatorcontrib>Rahman, Md Alinur</creatorcontrib><creatorcontrib>Islam, Md Salamoon</creatorcontrib><creatorcontrib>Shohugh, Pramit Kumar</creatorcontrib><creatorcontrib>Ahmed, Md Istiak</creatorcontrib><creatorcontrib>Khan, Md Washim</creatorcontrib><creatorcontrib>Rafi, Tanvir</creatorcontrib><creatorcontrib>Rahman, Mohammad Mahfuzur</creatorcontrib><creatorcontrib>Rahaman, Md Hasibur</creatorcontrib><creatorcontrib>Zhai, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rabbi, Fahim Muntasir</au><au>Hasan, Md Kamrul</au><au>Rahman, Md Alinur</au><au>Islam, Md Salamoon</au><au>Shohugh, Pramit Kumar</au><au>Ahmed, Md Istiak</au><au>Khan, Md Washim</au><au>Rafi, Tanvir</au><au>Rahman, Mohammad Mahfuzur</au><au>Rahaman, Md Hasibur</au><au>Zhai, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waste-derived substrates in vertical-flow constructed wetlands for an efficient removal of high-concentration heavy metals</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2025-01</date><risdate>2025</risdate><volume>91</volume><issue>1</issue><spage>21</spage><pages>21-</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>Contamination by heavy metals (HMs) in aquatic ecosystems is a worldwide issue. Therefore, a feasible solution is crucial for underdeveloped and developing countries. Waste-derived materials (WDMs) exhibit unique physical and chemical properties that promote diverse mechanisms for the removal of HMs in constructed wetlands (CWs). In this study, we aimed to report the removal efficiency of HMs of vertical-flow constructed wetland (VFCW) systems using different WDMs, such as clinker brick (Jhama), eggshells, and date palm fiber (DPF). Synthetic wastewater with high concentrations (3.3-61.8) mg/L of HMs (As, Cr, Cd, Pb, Fe, Zn, Cu, and Ni) was applied to the systems followed by 3 days of hydraulic retention time. The results demonstrate that removal efficiencies of HMs ranged between 94.8 and 98.7% for DPF, 95.4-98.5% for eggshells, and 79.9-92.9% for the Jhama-filled CWs, while the gravel-based systems were capable of 73-87.6% removal. Two macrophytes,
and
were planted in the CWs and exhibited significant accumulation of HMs in their roots. The study reports that WDMs are effective for concentrated HM removal in CWs, and macrophytes demonstrate significant phytoremediation capabilities. The findings of this study will facilitate the economically feasible and efficient design of CWs for effectively treating concentrated HMs in wastewater.</abstract><cop>England</cop><pmid>39815429</pmid><doi>10.2166/wst.2024.404</doi><orcidid>https://orcid.org/0000-0003-1324-0778</orcidid><orcidid>https://orcid.org/0000-0002-4378-0604</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 2025-01, Vol.91 (1), p.21 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_crossref_primary_10_2166_wst_2024_404 |
source | Alma/SFX Local Collection |
subjects | Metals, Heavy Waste Disposal, Fluid - methods Wastewater - chemistry Water Pollutants, Chemical - chemistry Water Purification - methods Wetlands |
title | Waste-derived substrates in vertical-flow constructed wetlands for an efficient removal of high-concentration heavy metals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waste-derived%20substrates%20in%20vertical-flow%20constructed%20wetlands%20for%20an%20efficient%20removal%20of%20high-concentration%20heavy%20metals&rft.jtitle=Water%20science%20and%20technology&rft.au=Rabbi,%20Fahim%20Muntasir&rft.date=2025-01&rft.volume=91&rft.issue=1&rft.spage=21&rft.pages=21-&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2024.404&rft_dat=%3Cproquest_cross%3E3156528506%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c178t-2f5686ece70ccb5313cc61b788b62f2a6359ec871b3536f889f0de97916fa4fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3156528506&rft_id=info:pmid/39815429&rfr_iscdi=true |