Loading…
Handwritten Digit Recognition
Digital recognition is also remarkable an important issue. As handwritten digits are not a same size, thickness, position and direction, in this case by the way, various difficulties should be considered find the handwritten digital recognition problem. I unique and a variety of creative styles for...
Saved in:
Published in: | International journal for research in applied science and engineering technology 2022-05, Vol.10 (5), p.75-82 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Digital recognition is also remarkable an important issue. As handwritten digits are not a same size, thickness, position and direction, in this case by the way, various difficulties should be considered find the handwritten digital recognition problem. I unique and a variety of creative styles for different people moreover have an influence on the model as well the presence of digits. It is a strategy to see again edit written digits. It has a wide variety applications, for example, scheduled bank checks, post offices and tax documents and so on. The purpose of this project is to use the classification algorithm to identify handwritten digits. Background results are probably the most widely used Machine Learning Algorithms such as SVM, KNN and RFC and in-depth reading calculations like CNN multilayer using Keras and Theano and Tensorflow. Using these, 98.70% accuracy was used by CNN (Keras + Theano) compared to 97.91% using SVM, 96.67% using KNN, 96.89% using RFC was obtained. Keywords: SVM, RFC, KNN, CNN |
---|---|
ISSN: | 2321-9653 2321-9653 |
DOI: | 10.22214/ijraset.2022.42062 |