Loading…
Secretion of nitrogen into the swimbladder fish. II. Molecular mechanism. secretion of noble gases [Toadfish, Opsanus tau]
Toadfish (Opsanus tau) were maintained at 50 m depth, 6 atm total pressure. The partial pressures of argon and nitrogen in the gases brought into the experimentally emptied swimbladder exceed the ambient pressures. The fraction of nitrogen in the gases brought into the swimbladder is nearly independ...
Saved in:
Published in: | The Biological bulletin (Lancaster) 1981-12, Vol.161 (3), p.440-451 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2218-3dff90e3b86e942e0e0a92e641175c1417e2700afaf127d75b1b31a5da9ebc873 |
---|---|
cites | |
container_end_page | 451 |
container_issue | 3 |
container_start_page | 440 |
container_title | The Biological bulletin (Lancaster) |
container_volume | 161 |
creator | Wittenberg, David K. Wittenberg, William Wittenberg, Jonathan B. Itada, Nobutomo |
description | Toadfish (Opsanus tau) were maintained at 50 m depth, 6 atm total pressure. The partial pressures of argon and nitrogen in the gases brought into the experimentally emptied swimbladder exceed the ambient pressures. The fraction of nitrogen in the gases brought into the swimbladder is nearly independent of depth. This finding is inconsistent with an earlier hypothesis that active oxygen secretion, by forming minute bubbles, drives nitrogen secretion. Toadfish were maintained in seawater equilibrated with mixtures containing oxygen, nitrogen, helium (in previous experiments), neon, argon, krypton and xenon. The more soluble gases are enriched in the mixture brought into the swimbladder, so that the composition of the inert gases brought into the swimbladder is similar to the composition of the gases dissolved in blood plasma. The enhancements, ($[{\rm Gas}/{\rm N}_{2}]_{\text{secreted}}\div [{\rm Gas}/{\rm N}_{2}]_{\text{ambient}}$), of the gases in the mixture brought into the swimbladder are proportional to the solubility of the gases in water. These facts support the hypothesis that salting out of inert gases elevates the partial pressure of nitrogen and other inert gases in the gas gland blood vessels. High gas pressures may be generated by counter-current multiplication of this initial effect. |
doi_str_mv | 10.2307/1540948 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_1540948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1540948</jstor_id><sourcerecordid>1540948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2218-3dff90e3b86e942e0e0a92e641175c1417e2700afaf127d75b1b31a5da9ebc873</originalsourceid><addsrcrecordid>eNp9kM1Kw0AYRQdRsFbxDWQWghtT5yfJzCyl-FOodNF2JRK-JN-0U5JMmUkRfXpb6saNq8uFc8_iEnLN2UhIph54ljKT6hMy4EaaROdGnZIBYyxPJNfZObmIcbOvTPB0QL7nWAXsne-ot7RzffAr7Kjrek_7NdL46dqygbrGQK2L6xGdTEb0zTdY7RoItMVqDZ2L7YjGPyZfNkhXEDHS94WH-jC-p7NthG4XaQ-7j0tyZqGJePWbQ7J8flqMX5Pp7GUyfpwmlRBcJ7K21jCUpc7RpAIZMjAC85RzlVU85QqFYgwsWC5UrbKSl5JDVoPBstJKDsnd0VsFH2NAW2yDayF8FZwVh8uK38v25O2R3MTeh3-wmyNmwRewCi4Wyzk3WjKdqUwY-QN0fnLh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Secretion of nitrogen into the swimbladder fish. II. Molecular mechanism. secretion of noble gases [Toadfish, Opsanus tau]</title><source>JSTOR</source><creator>Wittenberg, David K. ; Wittenberg, William ; Wittenberg, Jonathan B. ; Itada, Nobutomo</creator><creatorcontrib>Wittenberg, David K. ; Wittenberg, William ; Wittenberg, Jonathan B. ; Itada, Nobutomo</creatorcontrib><description>Toadfish (Opsanus tau) were maintained at 50 m depth, 6 atm total pressure. The partial pressures of argon and nitrogen in the gases brought into the experimentally emptied swimbladder exceed the ambient pressures. The fraction of nitrogen in the gases brought into the swimbladder is nearly independent of depth. This finding is inconsistent with an earlier hypothesis that active oxygen secretion, by forming minute bubbles, drives nitrogen secretion. Toadfish were maintained in seawater equilibrated with mixtures containing oxygen, nitrogen, helium (in previous experiments), neon, argon, krypton and xenon. The more soluble gases are enriched in the mixture brought into the swimbladder, so that the composition of the inert gases brought into the swimbladder is similar to the composition of the gases dissolved in blood plasma. The enhancements, ($[{\rm Gas}/{\rm N}_{2}]_{\text{secreted}}\div [{\rm Gas}/{\rm N}_{2}]_{\text{ambient}}$), of the gases in the mixture brought into the swimbladder are proportional to the solubility of the gases in water. These facts support the hypothesis that salting out of inert gases elevates the partial pressure of nitrogen and other inert gases in the gas gland blood vessels. High gas pressures may be generated by counter-current multiplication of this initial effect.</description><identifier>ISSN: 0006-3185</identifier><identifier>EISSN: 1939-8697</identifier><identifier>DOI: 10.2307/1540948</identifier><language>eng</language><publisher>Marine Biological Laboratory</publisher><subject>Argon ; Gases ; Nitrogen ; Noble gases ; Oxygen ; Sea water ; Secretion ; Solubility ; Swim bladder ; Xenon</subject><ispartof>The Biological bulletin (Lancaster), 1981-12, Vol.161 (3), p.440-451</ispartof><rights>Copyright 1981 The Marine Biological Laboratory</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2218-3dff90e3b86e942e0e0a92e641175c1417e2700afaf127d75b1b31a5da9ebc873</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1540948$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1540948$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,58236,58469</link.rule.ids></links><search><creatorcontrib>Wittenberg, David K.</creatorcontrib><creatorcontrib>Wittenberg, William</creatorcontrib><creatorcontrib>Wittenberg, Jonathan B.</creatorcontrib><creatorcontrib>Itada, Nobutomo</creatorcontrib><title>Secretion of nitrogen into the swimbladder fish. II. Molecular mechanism. secretion of noble gases [Toadfish, Opsanus tau]</title><title>The Biological bulletin (Lancaster)</title><description>Toadfish (Opsanus tau) were maintained at 50 m depth, 6 atm total pressure. The partial pressures of argon and nitrogen in the gases brought into the experimentally emptied swimbladder exceed the ambient pressures. The fraction of nitrogen in the gases brought into the swimbladder is nearly independent of depth. This finding is inconsistent with an earlier hypothesis that active oxygen secretion, by forming minute bubbles, drives nitrogen secretion. Toadfish were maintained in seawater equilibrated with mixtures containing oxygen, nitrogen, helium (in previous experiments), neon, argon, krypton and xenon. The more soluble gases are enriched in the mixture brought into the swimbladder, so that the composition of the inert gases brought into the swimbladder is similar to the composition of the gases dissolved in blood plasma. The enhancements, ($[{\rm Gas}/{\rm N}_{2}]_{\text{secreted}}\div [{\rm Gas}/{\rm N}_{2}]_{\text{ambient}}$), of the gases in the mixture brought into the swimbladder are proportional to the solubility of the gases in water. These facts support the hypothesis that salting out of inert gases elevates the partial pressure of nitrogen and other inert gases in the gas gland blood vessels. High gas pressures may be generated by counter-current multiplication of this initial effect.</description><subject>Argon</subject><subject>Gases</subject><subject>Nitrogen</subject><subject>Noble gases</subject><subject>Oxygen</subject><subject>Sea water</subject><subject>Secretion</subject><subject>Solubility</subject><subject>Swim bladder</subject><subject>Xenon</subject><issn>0006-3185</issn><issn>1939-8697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AYRQdRsFbxDWQWghtT5yfJzCyl-FOodNF2JRK-JN-0U5JMmUkRfXpb6saNq8uFc8_iEnLN2UhIph54ljKT6hMy4EaaROdGnZIBYyxPJNfZObmIcbOvTPB0QL7nWAXsne-ot7RzffAr7Kjrek_7NdL46dqygbrGQK2L6xGdTEb0zTdY7RoItMVqDZ2L7YjGPyZfNkhXEDHS94WH-jC-p7NthG4XaQ-7j0tyZqGJePWbQ7J8flqMX5Pp7GUyfpwmlRBcJ7K21jCUpc7RpAIZMjAC85RzlVU85QqFYgwsWC5UrbKSl5JDVoPBstJKDsnd0VsFH2NAW2yDayF8FZwVh8uK38v25O2R3MTeh3-wmyNmwRewCi4Wyzk3WjKdqUwY-QN0fnLh</recordid><startdate>19811201</startdate><enddate>19811201</enddate><creator>Wittenberg, David K.</creator><creator>Wittenberg, William</creator><creator>Wittenberg, Jonathan B.</creator><creator>Itada, Nobutomo</creator><general>Marine Biological Laboratory</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19811201</creationdate><title>Secretion of nitrogen into the swimbladder fish. II. Molecular mechanism. secretion of noble gases [Toadfish, Opsanus tau]</title><author>Wittenberg, David K. ; Wittenberg, William ; Wittenberg, Jonathan B. ; Itada, Nobutomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2218-3dff90e3b86e942e0e0a92e641175c1417e2700afaf127d75b1b31a5da9ebc873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><topic>Argon</topic><topic>Gases</topic><topic>Nitrogen</topic><topic>Noble gases</topic><topic>Oxygen</topic><topic>Sea water</topic><topic>Secretion</topic><topic>Solubility</topic><topic>Swim bladder</topic><topic>Xenon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wittenberg, David K.</creatorcontrib><creatorcontrib>Wittenberg, William</creatorcontrib><creatorcontrib>Wittenberg, Jonathan B.</creatorcontrib><creatorcontrib>Itada, Nobutomo</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><jtitle>The Biological bulletin (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wittenberg, David K.</au><au>Wittenberg, William</au><au>Wittenberg, Jonathan B.</au><au>Itada, Nobutomo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secretion of nitrogen into the swimbladder fish. II. Molecular mechanism. secretion of noble gases [Toadfish, Opsanus tau]</atitle><jtitle>The Biological bulletin (Lancaster)</jtitle><date>1981-12-01</date><risdate>1981</risdate><volume>161</volume><issue>3</issue><spage>440</spage><epage>451</epage><pages>440-451</pages><issn>0006-3185</issn><eissn>1939-8697</eissn><abstract>Toadfish (Opsanus tau) were maintained at 50 m depth, 6 atm total pressure. The partial pressures of argon and nitrogen in the gases brought into the experimentally emptied swimbladder exceed the ambient pressures. The fraction of nitrogen in the gases brought into the swimbladder is nearly independent of depth. This finding is inconsistent with an earlier hypothesis that active oxygen secretion, by forming minute bubbles, drives nitrogen secretion. Toadfish were maintained in seawater equilibrated with mixtures containing oxygen, nitrogen, helium (in previous experiments), neon, argon, krypton and xenon. The more soluble gases are enriched in the mixture brought into the swimbladder, so that the composition of the inert gases brought into the swimbladder is similar to the composition of the gases dissolved in blood plasma. The enhancements, ($[{\rm Gas}/{\rm N}_{2}]_{\text{secreted}}\div [{\rm Gas}/{\rm N}_{2}]_{\text{ambient}}$), of the gases in the mixture brought into the swimbladder are proportional to the solubility of the gases in water. These facts support the hypothesis that salting out of inert gases elevates the partial pressure of nitrogen and other inert gases in the gas gland blood vessels. High gas pressures may be generated by counter-current multiplication of this initial effect.</abstract><pub>Marine Biological Laboratory</pub><doi>10.2307/1540948</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3185 |
ispartof | The Biological bulletin (Lancaster), 1981-12, Vol.161 (3), p.440-451 |
issn | 0006-3185 1939-8697 |
language | eng |
recordid | cdi_crossref_primary_10_2307_1540948 |
source | JSTOR |
subjects | Argon Gases Nitrogen Noble gases Oxygen Sea water Secretion Solubility Swim bladder Xenon |
title | Secretion of nitrogen into the swimbladder fish. II. Molecular mechanism. secretion of noble gases [Toadfish, Opsanus tau] |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secretion%20of%20nitrogen%20into%20the%20swimbladder%20fish.%20II.%20Molecular%20mechanism.%20secretion%20of%20noble%20gases%20%5BToadfish,%20Opsanus%20tau%5D&rft.jtitle=The%20Biological%20bulletin%20(Lancaster)&rft.au=Wittenberg,%20David%20K.&rft.date=1981-12-01&rft.volume=161&rft.issue=3&rft.spage=440&rft.epage=451&rft.pages=440-451&rft.issn=0006-3185&rft.eissn=1939-8697&rft_id=info:doi/10.2307/1540948&rft_dat=%3Cjstor_cross%3E1540948%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2218-3dff90e3b86e942e0e0a92e641175c1417e2700afaf127d75b1b31a5da9ebc873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=1540948&rfr_iscdi=true |