Loading…
Hyperbolicity and the Creation of Homoclinic Orbits
We consider one-parameter families$\lbrace \varphi _\mu; \mu \epsilon R \rbrace$of diffeomorphisms on surfaces which display a homoclinic tangency for$\mu < 0$and are hyperbolic for$\mu < 0$(i.e., φμhas a hyperbolic nonwandering set); the tangency unfolds into transversal homoclinic orbits for...
Saved in:
Published in: | Annals of mathematics 1987-03, Vol.125 (2), p.337-374 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c279t-7cd67d7e9f32ad3a8b4e892e43f7d8665fffd9af34d815b56d304f365fe9fa733 |
---|---|
cites | |
container_end_page | 374 |
container_issue | 2 |
container_start_page | 337 |
container_title | Annals of mathematics |
container_volume | 125 |
creator | Palis, J. Takens, F. |
description | We consider one-parameter families$\lbrace \varphi _\mu; \mu \epsilon R \rbrace$of diffeomorphisms on surfaces which display a homoclinic tangency for$\mu < 0$and are hyperbolic for$\mu < 0$(i.e., φμhas a hyperbolic nonwandering set); the tangency unfolds into transversal homoclinic orbits for μ positive. For many of these families, we prove than φμis also hyperbolic for most small positive values or μ (which implies much regularity of the dynamical structure). A main assumption concerns the limit capacities of the basic set corresponding to the homoclinic tangency. |
doi_str_mv | 10.2307/1971313 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_1971313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1971313</jstor_id><sourcerecordid>1971313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-7cd67d7e9f32ad3a8b4e892e43f7d8665fffd9af34d815b56d304f365fe9fa733</originalsourceid><addsrcrecordid>eNp1z01LxDAQBuAgCtZV_As5CJ6qSafNx1GK7goLe1HwVtJ8YJZuU5Jc-u_tsouePA0zPPPCi9A9JU8VEP5MJadA4QIVVIIshRTkEhWEEChrwb6u0U1K-2XlnPECwWaebOzD4LXPM1ajwfnb4jZalX0YcXB4Ew5BD370Gu9i73O6RVdODcnenecKfb69frSbcrtbv7cv21JXXOaSa8O44VY6qJQBJfraClnZGhw3grHGOWekclAbQZu-YQZI7WC5Ly-KA6zQ4ylXx5BStK6boj-oOHeUdMeu3bnrIh9OclJJq8FFNWqffrk4Ykn_2D7lEP9N-wEa8125</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hyperbolicity and the Creation of Homoclinic Orbits</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Palis, J. ; Takens, F.</creator><creatorcontrib>Palis, J. ; Takens, F.</creatorcontrib><description>We consider one-parameter families$\lbrace \varphi _\mu; \mu \epsilon R \rbrace$of diffeomorphisms on surfaces which display a homoclinic tangency for$\mu < 0$and are hyperbolic for$\mu < 0$(i.e., φμhas a hyperbolic nonwandering set); the tangency unfolds into transversal homoclinic orbits for μ positive. For many of these families, we prove than φμis also hyperbolic for most small positive values or μ (which implies much regularity of the dynamical structure). A main assumption concerns the limit capacities of the basic set corresponding to the homoclinic tangency.</description><identifier>ISSN: 0003-486X</identifier><identifier>EISSN: 1939-8980</identifier><identifier>DOI: 10.2307/1971313</identifier><identifier>CODEN: ANMAAH</identifier><language>eng</language><publisher>Princeton, NJ: Princeton University</publisher><subject>Coordinate systems ; Eigenvalues ; Exact sciences and technology ; Function theory, analysis ; Horseshoes ; Leaves ; Mathematical methods in physics ; Periodic orbits ; Physics ; Quadrants ; Saddle points ; Tangents ; Zero</subject><ispartof>Annals of mathematics, 1987-03, Vol.125 (2), p.337-374</ispartof><rights>1987 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-7cd67d7e9f32ad3a8b4e892e43f7d8665fffd9af34d815b56d304f365fe9fa733</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1971313$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1971313$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8230791$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Palis, J.</creatorcontrib><creatorcontrib>Takens, F.</creatorcontrib><title>Hyperbolicity and the Creation of Homoclinic Orbits</title><title>Annals of mathematics</title><description>We consider one-parameter families$\lbrace \varphi _\mu; \mu \epsilon R \rbrace$of diffeomorphisms on surfaces which display a homoclinic tangency for$\mu < 0$and are hyperbolic for$\mu < 0$(i.e., φμhas a hyperbolic nonwandering set); the tangency unfolds into transversal homoclinic orbits for μ positive. For many of these families, we prove than φμis also hyperbolic for most small positive values or μ (which implies much regularity of the dynamical structure). A main assumption concerns the limit capacities of the basic set corresponding to the homoclinic tangency.</description><subject>Coordinate systems</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Horseshoes</subject><subject>Leaves</subject><subject>Mathematical methods in physics</subject><subject>Periodic orbits</subject><subject>Physics</subject><subject>Quadrants</subject><subject>Saddle points</subject><subject>Tangents</subject><subject>Zero</subject><issn>0003-486X</issn><issn>1939-8980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNp1z01LxDAQBuAgCtZV_As5CJ6qSafNx1GK7goLe1HwVtJ8YJZuU5Jc-u_tsouePA0zPPPCi9A9JU8VEP5MJadA4QIVVIIshRTkEhWEEChrwb6u0U1K-2XlnPECwWaebOzD4LXPM1ajwfnb4jZalX0YcXB4Ew5BD370Gu9i73O6RVdODcnenecKfb69frSbcrtbv7cv21JXXOaSa8O44VY6qJQBJfraClnZGhw3grHGOWekclAbQZu-YQZI7WC5Ly-KA6zQ4ylXx5BStK6boj-oOHeUdMeu3bnrIh9OclJJq8FFNWqffrk4Ykn_2D7lEP9N-wEa8125</recordid><startdate>19870301</startdate><enddate>19870301</enddate><creator>Palis, J.</creator><creator>Takens, F.</creator><general>Princeton University</general><general>Princeton University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19870301</creationdate><title>Hyperbolicity and the Creation of Homoclinic Orbits</title><author>Palis, J. ; Takens, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-7cd67d7e9f32ad3a8b4e892e43f7d8665fffd9af34d815b56d304f365fe9fa733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Coordinate systems</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Horseshoes</topic><topic>Leaves</topic><topic>Mathematical methods in physics</topic><topic>Periodic orbits</topic><topic>Physics</topic><topic>Quadrants</topic><topic>Saddle points</topic><topic>Tangents</topic><topic>Zero</topic><toplevel>online_resources</toplevel><creatorcontrib>Palis, J.</creatorcontrib><creatorcontrib>Takens, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Annals of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palis, J.</au><au>Takens, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolicity and the Creation of Homoclinic Orbits</atitle><jtitle>Annals of mathematics</jtitle><date>1987-03-01</date><risdate>1987</risdate><volume>125</volume><issue>2</issue><spage>337</spage><epage>374</epage><pages>337-374</pages><issn>0003-486X</issn><eissn>1939-8980</eissn><coden>ANMAAH</coden><abstract>We consider one-parameter families$\lbrace \varphi _\mu; \mu \epsilon R \rbrace$of diffeomorphisms on surfaces which display a homoclinic tangency for$\mu < 0$and are hyperbolic for$\mu < 0$(i.e., φμhas a hyperbolic nonwandering set); the tangency unfolds into transversal homoclinic orbits for μ positive. For many of these families, we prove than φμis also hyperbolic for most small positive values or μ (which implies much regularity of the dynamical structure). A main assumption concerns the limit capacities of the basic set corresponding to the homoclinic tangency.</abstract><cop>Princeton, NJ</cop><pub>Princeton University</pub><doi>10.2307/1971313</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-486X |
ispartof | Annals of mathematics, 1987-03, Vol.125 (2), p.337-374 |
issn | 0003-486X 1939-8980 |
language | eng |
recordid | cdi_crossref_primary_10_2307_1971313 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Coordinate systems Eigenvalues Exact sciences and technology Function theory, analysis Horseshoes Leaves Mathematical methods in physics Periodic orbits Physics Quadrants Saddle points Tangents Zero |
title | Hyperbolicity and the Creation of Homoclinic Orbits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolicity%20and%20the%20Creation%20of%20Homoclinic%20Orbits&rft.jtitle=Annals%20of%20mathematics&rft.au=Palis,%20J.&rft.date=1987-03-01&rft.volume=125&rft.issue=2&rft.spage=337&rft.epage=374&rft.pages=337-374&rft.issn=0003-486X&rft.eissn=1939-8980&rft.coden=ANMAAH&rft_id=info:doi/10.2307/1971313&rft_dat=%3Cjstor_cross%3E1971313%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c279t-7cd67d7e9f32ad3a8b4e892e43f7d8665fffd9af34d815b56d304f365fe9fa733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=1971313&rfr_iscdi=true |