Loading…

Hyperbolicity and the Creation of Homoclinic Orbits

We consider one-parameter families$\lbrace \varphi _\mu; \mu \epsilon R \rbrace$of diffeomorphisms on surfaces which display a homoclinic tangency for$\mu < 0$and are hyperbolic for$\mu < 0$(i.e., φμhas a hyperbolic nonwandering set); the tangency unfolds into transversal homoclinic orbits for...

Full description

Saved in:
Bibliographic Details
Published in:Annals of mathematics 1987-03, Vol.125 (2), p.337-374
Main Authors: Palis, J., Takens, F.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c279t-7cd67d7e9f32ad3a8b4e892e43f7d8665fffd9af34d815b56d304f365fe9fa733
cites
container_end_page 374
container_issue 2
container_start_page 337
container_title Annals of mathematics
container_volume 125
creator Palis, J.
Takens, F.
description We consider one-parameter families$\lbrace \varphi _\mu; \mu \epsilon R \rbrace$of diffeomorphisms on surfaces which display a homoclinic tangency for$\mu < 0$and are hyperbolic for$\mu < 0$(i.e., φμhas a hyperbolic nonwandering set); the tangency unfolds into transversal homoclinic orbits for μ positive. For many of these families, we prove than φμis also hyperbolic for most small positive values or μ (which implies much regularity of the dynamical structure). A main assumption concerns the limit capacities of the basic set corresponding to the homoclinic tangency.
doi_str_mv 10.2307/1971313
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_1971313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1971313</jstor_id><sourcerecordid>1971313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-7cd67d7e9f32ad3a8b4e892e43f7d8665fffd9af34d815b56d304f365fe9fa733</originalsourceid><addsrcrecordid>eNp1z01LxDAQBuAgCtZV_As5CJ6qSafNx1GK7goLe1HwVtJ8YJZuU5Jc-u_tsouePA0zPPPCi9A9JU8VEP5MJadA4QIVVIIshRTkEhWEEChrwb6u0U1K-2XlnPECwWaebOzD4LXPM1ajwfnb4jZalX0YcXB4Ew5BD370Gu9i73O6RVdODcnenecKfb69frSbcrtbv7cv21JXXOaSa8O44VY6qJQBJfraClnZGhw3grHGOWekclAbQZu-YQZI7WC5Ly-KA6zQ4ylXx5BStK6boj-oOHeUdMeu3bnrIh9OclJJq8FFNWqffrk4Ykn_2D7lEP9N-wEa8125</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hyperbolicity and the Creation of Homoclinic Orbits</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Palis, J. ; Takens, F.</creator><creatorcontrib>Palis, J. ; Takens, F.</creatorcontrib><description>We consider one-parameter families$\lbrace \varphi _\mu; \mu \epsilon R \rbrace$of diffeomorphisms on surfaces which display a homoclinic tangency for$\mu &lt; 0$and are hyperbolic for$\mu &lt; 0$(i.e., φμhas a hyperbolic nonwandering set); the tangency unfolds into transversal homoclinic orbits for μ positive. For many of these families, we prove than φμis also hyperbolic for most small positive values or μ (which implies much regularity of the dynamical structure). A main assumption concerns the limit capacities of the basic set corresponding to the homoclinic tangency.</description><identifier>ISSN: 0003-486X</identifier><identifier>EISSN: 1939-8980</identifier><identifier>DOI: 10.2307/1971313</identifier><identifier>CODEN: ANMAAH</identifier><language>eng</language><publisher>Princeton, NJ: Princeton University</publisher><subject>Coordinate systems ; Eigenvalues ; Exact sciences and technology ; Function theory, analysis ; Horseshoes ; Leaves ; Mathematical methods in physics ; Periodic orbits ; Physics ; Quadrants ; Saddle points ; Tangents ; Zero</subject><ispartof>Annals of mathematics, 1987-03, Vol.125 (2), p.337-374</ispartof><rights>1987 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-7cd67d7e9f32ad3a8b4e892e43f7d8665fffd9af34d815b56d304f365fe9fa733</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1971313$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1971313$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8230791$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Palis, J.</creatorcontrib><creatorcontrib>Takens, F.</creatorcontrib><title>Hyperbolicity and the Creation of Homoclinic Orbits</title><title>Annals of mathematics</title><description>We consider one-parameter families$\lbrace \varphi _\mu; \mu \epsilon R \rbrace$of diffeomorphisms on surfaces which display a homoclinic tangency for$\mu &lt; 0$and are hyperbolic for$\mu &lt; 0$(i.e., φμhas a hyperbolic nonwandering set); the tangency unfolds into transversal homoclinic orbits for μ positive. For many of these families, we prove than φμis also hyperbolic for most small positive values or μ (which implies much regularity of the dynamical structure). A main assumption concerns the limit capacities of the basic set corresponding to the homoclinic tangency.</description><subject>Coordinate systems</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Horseshoes</subject><subject>Leaves</subject><subject>Mathematical methods in physics</subject><subject>Periodic orbits</subject><subject>Physics</subject><subject>Quadrants</subject><subject>Saddle points</subject><subject>Tangents</subject><subject>Zero</subject><issn>0003-486X</issn><issn>1939-8980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNp1z01LxDAQBuAgCtZV_As5CJ6qSafNx1GK7goLe1HwVtJ8YJZuU5Jc-u_tsouePA0zPPPCi9A9JU8VEP5MJadA4QIVVIIshRTkEhWEEChrwb6u0U1K-2XlnPECwWaebOzD4LXPM1ajwfnb4jZalX0YcXB4Ew5BD370Gu9i73O6RVdODcnenecKfb69frSbcrtbv7cv21JXXOaSa8O44VY6qJQBJfraClnZGhw3grHGOWekclAbQZu-YQZI7WC5Ly-KA6zQ4ylXx5BStK6boj-oOHeUdMeu3bnrIh9OclJJq8FFNWqffrk4Ykn_2D7lEP9N-wEa8125</recordid><startdate>19870301</startdate><enddate>19870301</enddate><creator>Palis, J.</creator><creator>Takens, F.</creator><general>Princeton University</general><general>Princeton University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19870301</creationdate><title>Hyperbolicity and the Creation of Homoclinic Orbits</title><author>Palis, J. ; Takens, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-7cd67d7e9f32ad3a8b4e892e43f7d8665fffd9af34d815b56d304f365fe9fa733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Coordinate systems</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Horseshoes</topic><topic>Leaves</topic><topic>Mathematical methods in physics</topic><topic>Periodic orbits</topic><topic>Physics</topic><topic>Quadrants</topic><topic>Saddle points</topic><topic>Tangents</topic><topic>Zero</topic><toplevel>online_resources</toplevel><creatorcontrib>Palis, J.</creatorcontrib><creatorcontrib>Takens, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Annals of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palis, J.</au><au>Takens, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolicity and the Creation of Homoclinic Orbits</atitle><jtitle>Annals of mathematics</jtitle><date>1987-03-01</date><risdate>1987</risdate><volume>125</volume><issue>2</issue><spage>337</spage><epage>374</epage><pages>337-374</pages><issn>0003-486X</issn><eissn>1939-8980</eissn><coden>ANMAAH</coden><abstract>We consider one-parameter families$\lbrace \varphi _\mu; \mu \epsilon R \rbrace$of diffeomorphisms on surfaces which display a homoclinic tangency for$\mu &lt; 0$and are hyperbolic for$\mu &lt; 0$(i.e., φμhas a hyperbolic nonwandering set); the tangency unfolds into transversal homoclinic orbits for μ positive. For many of these families, we prove than φμis also hyperbolic for most small positive values or μ (which implies much regularity of the dynamical structure). A main assumption concerns the limit capacities of the basic set corresponding to the homoclinic tangency.</abstract><cop>Princeton, NJ</cop><pub>Princeton University</pub><doi>10.2307/1971313</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-486X
ispartof Annals of mathematics, 1987-03, Vol.125 (2), p.337-374
issn 0003-486X
1939-8980
language eng
recordid cdi_crossref_primary_10_2307_1971313
source JSTOR Archival Journals and Primary Sources Collection
subjects Coordinate systems
Eigenvalues
Exact sciences and technology
Function theory, analysis
Horseshoes
Leaves
Mathematical methods in physics
Periodic orbits
Physics
Quadrants
Saddle points
Tangents
Zero
title Hyperbolicity and the Creation of Homoclinic Orbits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolicity%20and%20the%20Creation%20of%20Homoclinic%20Orbits&rft.jtitle=Annals%20of%20mathematics&rft.au=Palis,%20J.&rft.date=1987-03-01&rft.volume=125&rft.issue=2&rft.spage=337&rft.epage=374&rft.pages=337-374&rft.issn=0003-486X&rft.eissn=1939-8980&rft.coden=ANMAAH&rft_id=info:doi/10.2307/1971313&rft_dat=%3Cjstor_cross%3E1971313%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c279t-7cd67d7e9f32ad3a8b4e892e43f7d8665fffd9af34d815b56d304f365fe9fa733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=1971313&rfr_iscdi=true