Loading…

An Interpolation Problem for Coefficients of H∞Functions

H∞denotes the space of all bounded functions g on the unit circle whose Fourier coefficients$\hat g(n)$are zero for all negative n. It is known that, if {nk}∞ k = 0is a sequence of nonnegative integers with$n_{k + 1} > (1 + \delta)n_k$for all k, and if$\sum^\infty_{k = 0} |v_k|^2 < \infty$, th...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the American Mathematical Society 1974-02, Vol.42 (2), p.402-408
Main Author: Fournier, John J. F.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c996-c4b88de015c9c47bba2d2b5cfe43a6b5df6365592a61fe85e0294a627843e9013
cites
container_end_page 408
container_issue 2
container_start_page 402
container_title Proceedings of the American Mathematical Society
container_volume 42
creator Fournier, John J. F.
description H∞denotes the space of all bounded functions g on the unit circle whose Fourier coefficients$\hat g(n)$are zero for all negative n. It is known that, if {nk}∞ k = 0is a sequence of nonnegative integers with$n_{k + 1} > (1 + \delta)n_k$for all k, and if$\sum^\infty_{k = 0} |v_k|^2 < \infty$, then there is a function g in H∞with$\hat g(n_k) = v_k$for all k. Previous proofs of this fact have not indicated how to construct such H∞functions. This paper contains a simple, direct construction of such functions. The construction depends on properties of some polynomials similar to those introduced by Shapiro and Rudin. There is also a connection with a type of Riesz product studied by Salem and Zygmund.
doi_str_mv 10.2307/2039516
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_2039516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2039516</jstor_id><sourcerecordid>2039516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c996-c4b88de015c9c47bba2d2b5cfe43a6b5df6365592a61fe85e0294a627843e9013</originalsourceid><addsrcrecordid>eNp1z01KAzEcBfAgCo5VvEIWgqvRfE_irgzWFgq66H5IMv_AlGlSknHhDTyFh_MktrRbV48HPx48hO4peWKcNM-McCOpukAVJVrXSjN1iSpCCKuN4eYa3ZSyPVRqRFOhl3nEqzhB3qfRTkOK-CMnN8IOh5RxmyCEwQ8Qp4JTwMvf75_FZ_RHWG7RVbBjgbtzztBm8bppl_X6_W3Vzte1N0bVXjiteyBUeuNF45xlPXPSBxDcKif7oLiS0jCraAAtgTAjrGKNFhwMoXyGHk-zPqdSMoRun4edzV8dJd3xcXd-fJAPJ7ktU8r_sj8milNt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Interpolation Problem for Coefficients of H∞Functions</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>American Mathematical Society Publications (Freely Accessible)</source><creator>Fournier, John J. F.</creator><creatorcontrib>Fournier, John J. F.</creatorcontrib><description>H∞denotes the space of all bounded functions g on the unit circle whose Fourier coefficients$\hat g(n)$are zero for all negative n. It is known that, if {nk}∞ k = 0is a sequence of nonnegative integers with$n_{k + 1} &gt; (1 + \delta)n_k$for all k, and if$\sum^\infty_{k = 0} |v_k|^2 &lt; \infty$, then there is a function g in H∞with$\hat g(n_k) = v_k$for all k. Previous proofs of this fact have not indicated how to construct such H∞functions. This paper contains a simple, direct construction of such functions. The construction depends on properties of some polynomials similar to those introduced by Shapiro and Rudin. There is also a connection with a type of Riesz product studied by Salem and Zygmund.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.2307/2039516</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Coefficients ; Fourier coefficients ; Fourier series ; Integers ; Interpolation ; Mathematical functions ; Mathematical theorems ; Polynomials ; Series convergence</subject><ispartof>Proceedings of the American Mathematical Society, 1974-02, Vol.42 (2), p.402-408</ispartof><rights>Copyright 1974 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c996-c4b88de015c9c47bba2d2b5cfe43a6b5df6365592a61fe85e0294a627843e9013</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2039516$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2039516$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids></links><search><creatorcontrib>Fournier, John J. F.</creatorcontrib><title>An Interpolation Problem for Coefficients of H∞Functions</title><title>Proceedings of the American Mathematical Society</title><description>H∞denotes the space of all bounded functions g on the unit circle whose Fourier coefficients$\hat g(n)$are zero for all negative n. It is known that, if {nk}∞ k = 0is a sequence of nonnegative integers with$n_{k + 1} &gt; (1 + \delta)n_k$for all k, and if$\sum^\infty_{k = 0} |v_k|^2 &lt; \infty$, then there is a function g in H∞with$\hat g(n_k) = v_k$for all k. Previous proofs of this fact have not indicated how to construct such H∞functions. This paper contains a simple, direct construction of such functions. The construction depends on properties of some polynomials similar to those introduced by Shapiro and Rudin. There is also a connection with a type of Riesz product studied by Salem and Zygmund.</description><subject>Coefficients</subject><subject>Fourier coefficients</subject><subject>Fourier series</subject><subject>Integers</subject><subject>Interpolation</subject><subject>Mathematical functions</subject><subject>Mathematical theorems</subject><subject>Polynomials</subject><subject>Series convergence</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1974</creationdate><recordtype>article</recordtype><recordid>eNp1z01KAzEcBfAgCo5VvEIWgqvRfE_irgzWFgq66H5IMv_AlGlSknHhDTyFh_MktrRbV48HPx48hO4peWKcNM-McCOpukAVJVrXSjN1iSpCCKuN4eYa3ZSyPVRqRFOhl3nEqzhB3qfRTkOK-CMnN8IOh5RxmyCEwQ8Qp4JTwMvf75_FZ_RHWG7RVbBjgbtzztBm8bppl_X6_W3Vzte1N0bVXjiteyBUeuNF45xlPXPSBxDcKif7oLiS0jCraAAtgTAjrGKNFhwMoXyGHk-zPqdSMoRun4edzV8dJd3xcXd-fJAPJ7ktU8r_sj8milNt</recordid><startdate>19740201</startdate><enddate>19740201</enddate><creator>Fournier, John J. F.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19740201</creationdate><title>An Interpolation Problem for Coefficients of H∞Functions</title><author>Fournier, John J. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c996-c4b88de015c9c47bba2d2b5cfe43a6b5df6365592a61fe85e0294a627843e9013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1974</creationdate><topic>Coefficients</topic><topic>Fourier coefficients</topic><topic>Fourier series</topic><topic>Integers</topic><topic>Interpolation</topic><topic>Mathematical functions</topic><topic>Mathematical theorems</topic><topic>Polynomials</topic><topic>Series convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fournier, John J. F.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fournier, John J. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Interpolation Problem for Coefficients of H∞Functions</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>1974-02-01</date><risdate>1974</risdate><volume>42</volume><issue>2</issue><spage>402</spage><epage>408</epage><pages>402-408</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>H∞denotes the space of all bounded functions g on the unit circle whose Fourier coefficients$\hat g(n)$are zero for all negative n. It is known that, if {nk}∞ k = 0is a sequence of nonnegative integers with$n_{k + 1} &gt; (1 + \delta)n_k$for all k, and if$\sum^\infty_{k = 0} |v_k|^2 &lt; \infty$, then there is a function g in H∞with$\hat g(n_k) = v_k$for all k. Previous proofs of this fact have not indicated how to construct such H∞functions. This paper contains a simple, direct construction of such functions. The construction depends on properties of some polynomials similar to those introduced by Shapiro and Rudin. There is also a connection with a type of Riesz product studied by Salem and Zygmund.</abstract><pub>American Mathematical Society</pub><doi>10.2307/2039516</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 1974-02, Vol.42 (2), p.402-408
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_2307_2039516
source JSTOR Archival Journals and Primary Sources Collection; American Mathematical Society Publications (Freely Accessible)
subjects Coefficients
Fourier coefficients
Fourier series
Integers
Interpolation
Mathematical functions
Mathematical theorems
Polynomials
Series convergence
title An Interpolation Problem for Coefficients of H∞Functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T07%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Interpolation%20Problem%20for%20Coefficients%20of%20H%E2%88%9EFunctions&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Fournier,%20John%20J.%20F.&rft.date=1974-02-01&rft.volume=42&rft.issue=2&rft.spage=402&rft.epage=408&rft.pages=402-408&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.2307/2039516&rft_dat=%3Cjstor_cross%3E2039516%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c996-c4b88de015c9c47bba2d2b5cfe43a6b5df6365592a61fe85e0294a627843e9013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2039516&rfr_iscdi=true