Loading…
Characterization of Separable Metric R-Trees
An R-tree (X, d) is a uniquely arcwise connected metric space in which each arc is isometric to a subarc of the reals. R-trees arise naturally in the study of groups of isometries of hyperbolic space. Two of the authors had previously characterized R-trees topologically among metric spaces. The purp...
Saved in:
Published in: | Proceedings of the American Mathematical Society 1992-05, Vol.115 (1), p.257-264, Article 257 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c308t-80c70fb301cea7faf27b5bc5a91f820a1cdba3b3d52302e6b282e7f83380c4393 |
---|---|
cites | |
container_end_page | 264 |
container_issue | 1 |
container_start_page | 257 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 115 |
creator | Mayer, J. C. Mohler, L. K. Oversteegen, L. G. Tymchatyn, E. D. |
description | An R-tree (X, d) is a uniquely arcwise connected metric space in which each arc is isometric to a subarc of the reals. R-trees arise naturally in the study of groups of isometries of hyperbolic space. Two of the authors had previously characterized R-trees topologically among metric spaces. The purpose of this paper is to provide a simpler proof of this characterization for separable metric spaces. The main theorem is the following: Let (X, r) be a separable metric space. Then the following are equivalent: (1) X admits an equivalent metric d such that (X, d) is an R-tree. (2) X is locally arcwise connected and uniquely arcwise connected. The method of proving that (2) implies (1) is to "improve" the metric r through a sequence of equivalent metrics of which the first is monotone one arcs, the second is strictly monotone on arcs, and the last is convex, as desired. |
doi_str_mv | 10.2307/2159595 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_2159595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2159595</jstor_id><sourcerecordid>2159595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-80c70fb301cea7faf27b5bc5a91f820a1cdba3b3d52302e6b282e7f83380c4393</originalsourceid><addsrcrecordid>eNp1j0FLAzEQhYMoWKv4F_YgeDE6SXY3yVEWq0JF0HpeJmmCKWu3JLnorzfa4kEocxhm-Oa9eYScM7jmAuQNZ40udUAmDJSireLtIZkAAKdaC31MTlJalZHpWk7IVfeOEW12MXxhDuO6Gn316jZlaQZXPbkcg61e6CI6l07JkcchubNdn5K32d2ie6Dz5_vH7nZOrQCVqQIrwRsBzDqUHj2XpjG2Qc284oDMLg0KI5ZNeZi71nDFnfRKiHJZCy2m5HKra-OYUnS-38TwgfGzZ9D_hOx3IQt5sSU3mCwOPuLahvSH11I1TELB6D9BG_Jv3BwxDPtlVymPca_7Nxi-aVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterization of Separable Metric R-Trees</title><source>American Mathematical Society Publications - Open Access</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Mayer, J. C. ; Mohler, L. K. ; Oversteegen, L. G. ; Tymchatyn, E. D.</creator><creatorcontrib>Mayer, J. C. ; Mohler, L. K. ; Oversteegen, L. G. ; Tymchatyn, E. D.</creatorcontrib><description>An R-tree (X, d) is a uniquely arcwise connected metric space in which each arc is isometric to a subarc of the reals. R-trees arise naturally in the study of groups of isometries of hyperbolic space. Two of the authors had previously characterized R-trees topologically among metric spaces. The purpose of this paper is to provide a simpler proof of this characterization for separable metric spaces. The main theorem is the following: Let (X, r) be a separable metric space. Then the following are equivalent: (1) X admits an equivalent metric d such that (X, d) is an R-tree. (2) X is locally arcwise connected and uniquely arcwise connected. The method of proving that (2) implies (1) is to "improve" the metric r through a sequence of equivalent metrics of which the first is monotone one arcs, the second is strictly monotone on arcs, and the last is convex, as desired.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.2307/2159595</identifier><identifier>CODEN: PAMYAR</identifier><language>eng</language><publisher>Providence, RI: American Mathematical Society</publisher><subject>Exact sciences and technology ; General topology ; Mathematical theorems ; Mathematics ; Metric spaces ; Sciences and techniques of general use ; Separable spaces ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Triangle inequalities</subject><ispartof>Proceedings of the American Mathematical Society, 1992-05, Vol.115 (1), p.257-264, Article 257</ispartof><rights>Copyright 1992 American Mathematical Society</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-80c70fb301cea7faf27b5bc5a91f820a1cdba3b3d52302e6b282e7f83380c4393</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2159595$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2159595$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4785170$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mayer, J. C.</creatorcontrib><creatorcontrib>Mohler, L. K.</creatorcontrib><creatorcontrib>Oversteegen, L. G.</creatorcontrib><creatorcontrib>Tymchatyn, E. D.</creatorcontrib><title>Characterization of Separable Metric R-Trees</title><title>Proceedings of the American Mathematical Society</title><description>An R-tree (X, d) is a uniquely arcwise connected metric space in which each arc is isometric to a subarc of the reals. R-trees arise naturally in the study of groups of isometries of hyperbolic space. Two of the authors had previously characterized R-trees topologically among metric spaces. The purpose of this paper is to provide a simpler proof of this characterization for separable metric spaces. The main theorem is the following: Let (X, r) be a separable metric space. Then the following are equivalent: (1) X admits an equivalent metric d such that (X, d) is an R-tree. (2) X is locally arcwise connected and uniquely arcwise connected. The method of proving that (2) implies (1) is to "improve" the metric r through a sequence of equivalent metrics of which the first is monotone one arcs, the second is strictly monotone on arcs, and the last is convex, as desired.</description><subject>Exact sciences and technology</subject><subject>General topology</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Metric spaces</subject><subject>Sciences and techniques of general use</subject><subject>Separable spaces</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Triangle inequalities</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLAzEQhYMoWKv4F_YgeDE6SXY3yVEWq0JF0HpeJmmCKWu3JLnorzfa4kEocxhm-Oa9eYScM7jmAuQNZ40udUAmDJSireLtIZkAAKdaC31MTlJalZHpWk7IVfeOEW12MXxhDuO6Gn316jZlaQZXPbkcg61e6CI6l07JkcchubNdn5K32d2ie6Dz5_vH7nZOrQCVqQIrwRsBzDqUHj2XpjG2Qc284oDMLg0KI5ZNeZi71nDFnfRKiHJZCy2m5HKra-OYUnS-38TwgfGzZ9D_hOx3IQt5sSU3mCwOPuLahvSH11I1TELB6D9BG_Jv3BwxDPtlVymPca_7Nxi-aVw</recordid><startdate>19920501</startdate><enddate>19920501</enddate><creator>Mayer, J. C.</creator><creator>Mohler, L. K.</creator><creator>Oversteegen, L. G.</creator><creator>Tymchatyn, E. D.</creator><general>American Mathematical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920501</creationdate><title>Characterization of Separable Metric R-Trees</title><author>Mayer, J. C. ; Mohler, L. K. ; Oversteegen, L. G. ; Tymchatyn, E. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-80c70fb301cea7faf27b5bc5a91f820a1cdba3b3d52302e6b282e7f83380c4393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Exact sciences and technology</topic><topic>General topology</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Metric spaces</topic><topic>Sciences and techniques of general use</topic><topic>Separable spaces</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Triangle inequalities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayer, J. C.</creatorcontrib><creatorcontrib>Mohler, L. K.</creatorcontrib><creatorcontrib>Oversteegen, L. G.</creatorcontrib><creatorcontrib>Tymchatyn, E. D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayer, J. C.</au><au>Mohler, L. K.</au><au>Oversteegen, L. G.</au><au>Tymchatyn, E. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Separable Metric R-Trees</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>1992-05-01</date><risdate>1992</risdate><volume>115</volume><issue>1</issue><spage>257</spage><epage>264</epage><pages>257-264</pages><artnum>257</artnum><issn>0002-9939</issn><eissn>1088-6826</eissn><coden>PAMYAR</coden><abstract>An R-tree (X, d) is a uniquely arcwise connected metric space in which each arc is isometric to a subarc of the reals. R-trees arise naturally in the study of groups of isometries of hyperbolic space. Two of the authors had previously characterized R-trees topologically among metric spaces. The purpose of this paper is to provide a simpler proof of this characterization for separable metric spaces. The main theorem is the following: Let (X, r) be a separable metric space. Then the following are equivalent: (1) X admits an equivalent metric d such that (X, d) is an R-tree. (2) X is locally arcwise connected and uniquely arcwise connected. The method of proving that (2) implies (1) is to "improve" the metric r through a sequence of equivalent metrics of which the first is monotone one arcs, the second is strictly monotone on arcs, and the last is convex, as desired.</abstract><cop>Providence, RI</cop><pub>American Mathematical Society</pub><doi>10.2307/2159595</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 1992-05, Vol.115 (1), p.257-264, Article 257 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_2307_2159595 |
source | American Mathematical Society Publications - Open Access; JSTOR Archival Journals and Primary Sources Collection |
subjects | Exact sciences and technology General topology Mathematical theorems Mathematics Metric spaces Sciences and techniques of general use Separable spaces Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds Triangle inequalities |
title | Characterization of Separable Metric R-Trees |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Separable%20Metric%20R-Trees&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Mayer,%20J.%20C.&rft.date=1992-05-01&rft.volume=115&rft.issue=1&rft.spage=257&rft.epage=264&rft.pages=257-264&rft.artnum=257&rft.issn=0002-9939&rft.eissn=1088-6826&rft.coden=PAMYAR&rft_id=info:doi/10.2307/2159595&rft_dat=%3Cjstor_cross%3E2159595%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-80c70fb301cea7faf27b5bc5a91f820a1cdba3b3d52302e6b282e7f83380c4393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2159595&rfr_iscdi=true |