Loading…

Characterization of Separable Metric R-Trees

An R-tree (X, d) is a uniquely arcwise connected metric space in which each arc is isometric to a subarc of the reals. R-trees arise naturally in the study of groups of isometries of hyperbolic space. Two of the authors had previously characterized R-trees topologically among metric spaces. The purp...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the American Mathematical Society 1992-05, Vol.115 (1), p.257-264, Article 257
Main Authors: Mayer, J. C., Mohler, L. K., Oversteegen, L. G., Tymchatyn, E. D.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c308t-80c70fb301cea7faf27b5bc5a91f820a1cdba3b3d52302e6b282e7f83380c4393
cites
container_end_page 264
container_issue 1
container_start_page 257
container_title Proceedings of the American Mathematical Society
container_volume 115
creator Mayer, J. C.
Mohler, L. K.
Oversteegen, L. G.
Tymchatyn, E. D.
description An R-tree (X, d) is a uniquely arcwise connected metric space in which each arc is isometric to a subarc of the reals. R-trees arise naturally in the study of groups of isometries of hyperbolic space. Two of the authors had previously characterized R-trees topologically among metric spaces. The purpose of this paper is to provide a simpler proof of this characterization for separable metric spaces. The main theorem is the following: Let (X, r) be a separable metric space. Then the following are equivalent: (1) X admits an equivalent metric d such that (X, d) is an R-tree. (2) X is locally arcwise connected and uniquely arcwise connected. The method of proving that (2) implies (1) is to "improve" the metric r through a sequence of equivalent metrics of which the first is monotone one arcs, the second is strictly monotone on arcs, and the last is convex, as desired.
doi_str_mv 10.2307/2159595
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_2159595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2159595</jstor_id><sourcerecordid>2159595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-80c70fb301cea7faf27b5bc5a91f820a1cdba3b3d52302e6b282e7f83380c4393</originalsourceid><addsrcrecordid>eNp1j0FLAzEQhYMoWKv4F_YgeDE6SXY3yVEWq0JF0HpeJmmCKWu3JLnorzfa4kEocxhm-Oa9eYScM7jmAuQNZ40udUAmDJSireLtIZkAAKdaC31MTlJalZHpWk7IVfeOEW12MXxhDuO6Gn316jZlaQZXPbkcg61e6CI6l07JkcchubNdn5K32d2ie6Dz5_vH7nZOrQCVqQIrwRsBzDqUHj2XpjG2Qc284oDMLg0KI5ZNeZi71nDFnfRKiHJZCy2m5HKra-OYUnS-38TwgfGzZ9D_hOx3IQt5sSU3mCwOPuLahvSH11I1TELB6D9BG_Jv3BwxDPtlVymPca_7Nxi-aVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterization of Separable Metric R-Trees</title><source>American Mathematical Society Publications - Open Access</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Mayer, J. C. ; Mohler, L. K. ; Oversteegen, L. G. ; Tymchatyn, E. D.</creator><creatorcontrib>Mayer, J. C. ; Mohler, L. K. ; Oversteegen, L. G. ; Tymchatyn, E. D.</creatorcontrib><description>An R-tree (X, d) is a uniquely arcwise connected metric space in which each arc is isometric to a subarc of the reals. R-trees arise naturally in the study of groups of isometries of hyperbolic space. Two of the authors had previously characterized R-trees topologically among metric spaces. The purpose of this paper is to provide a simpler proof of this characterization for separable metric spaces. The main theorem is the following: Let (X, r) be a separable metric space. Then the following are equivalent: (1) X admits an equivalent metric d such that (X, d) is an R-tree. (2) X is locally arcwise connected and uniquely arcwise connected. The method of proving that (2) implies (1) is to "improve" the metric r through a sequence of equivalent metrics of which the first is monotone one arcs, the second is strictly monotone on arcs, and the last is convex, as desired.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.2307/2159595</identifier><identifier>CODEN: PAMYAR</identifier><language>eng</language><publisher>Providence, RI: American Mathematical Society</publisher><subject>Exact sciences and technology ; General topology ; Mathematical theorems ; Mathematics ; Metric spaces ; Sciences and techniques of general use ; Separable spaces ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Triangle inequalities</subject><ispartof>Proceedings of the American Mathematical Society, 1992-05, Vol.115 (1), p.257-264, Article 257</ispartof><rights>Copyright 1992 American Mathematical Society</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-80c70fb301cea7faf27b5bc5a91f820a1cdba3b3d52302e6b282e7f83380c4393</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2159595$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2159595$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4785170$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mayer, J. C.</creatorcontrib><creatorcontrib>Mohler, L. K.</creatorcontrib><creatorcontrib>Oversteegen, L. G.</creatorcontrib><creatorcontrib>Tymchatyn, E. D.</creatorcontrib><title>Characterization of Separable Metric R-Trees</title><title>Proceedings of the American Mathematical Society</title><description>An R-tree (X, d) is a uniquely arcwise connected metric space in which each arc is isometric to a subarc of the reals. R-trees arise naturally in the study of groups of isometries of hyperbolic space. Two of the authors had previously characterized R-trees topologically among metric spaces. The purpose of this paper is to provide a simpler proof of this characterization for separable metric spaces. The main theorem is the following: Let (X, r) be a separable metric space. Then the following are equivalent: (1) X admits an equivalent metric d such that (X, d) is an R-tree. (2) X is locally arcwise connected and uniquely arcwise connected. The method of proving that (2) implies (1) is to "improve" the metric r through a sequence of equivalent metrics of which the first is monotone one arcs, the second is strictly monotone on arcs, and the last is convex, as desired.</description><subject>Exact sciences and technology</subject><subject>General topology</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Metric spaces</subject><subject>Sciences and techniques of general use</subject><subject>Separable spaces</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Triangle inequalities</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLAzEQhYMoWKv4F_YgeDE6SXY3yVEWq0JF0HpeJmmCKWu3JLnorzfa4kEocxhm-Oa9eYScM7jmAuQNZ40udUAmDJSireLtIZkAAKdaC31MTlJalZHpWk7IVfeOEW12MXxhDuO6Gn316jZlaQZXPbkcg61e6CI6l07JkcchubNdn5K32d2ie6Dz5_vH7nZOrQCVqQIrwRsBzDqUHj2XpjG2Qc284oDMLg0KI5ZNeZi71nDFnfRKiHJZCy2m5HKra-OYUnS-38TwgfGzZ9D_hOx3IQt5sSU3mCwOPuLahvSH11I1TELB6D9BG_Jv3BwxDPtlVymPca_7Nxi-aVw</recordid><startdate>19920501</startdate><enddate>19920501</enddate><creator>Mayer, J. C.</creator><creator>Mohler, L. K.</creator><creator>Oversteegen, L. G.</creator><creator>Tymchatyn, E. D.</creator><general>American Mathematical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920501</creationdate><title>Characterization of Separable Metric R-Trees</title><author>Mayer, J. C. ; Mohler, L. K. ; Oversteegen, L. G. ; Tymchatyn, E. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-80c70fb301cea7faf27b5bc5a91f820a1cdba3b3d52302e6b282e7f83380c4393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Exact sciences and technology</topic><topic>General topology</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Metric spaces</topic><topic>Sciences and techniques of general use</topic><topic>Separable spaces</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Triangle inequalities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayer, J. C.</creatorcontrib><creatorcontrib>Mohler, L. K.</creatorcontrib><creatorcontrib>Oversteegen, L. G.</creatorcontrib><creatorcontrib>Tymchatyn, E. D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayer, J. C.</au><au>Mohler, L. K.</au><au>Oversteegen, L. G.</au><au>Tymchatyn, E. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Separable Metric R-Trees</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>1992-05-01</date><risdate>1992</risdate><volume>115</volume><issue>1</issue><spage>257</spage><epage>264</epage><pages>257-264</pages><artnum>257</artnum><issn>0002-9939</issn><eissn>1088-6826</eissn><coden>PAMYAR</coden><abstract>An R-tree (X, d) is a uniquely arcwise connected metric space in which each arc is isometric to a subarc of the reals. R-trees arise naturally in the study of groups of isometries of hyperbolic space. Two of the authors had previously characterized R-trees topologically among metric spaces. The purpose of this paper is to provide a simpler proof of this characterization for separable metric spaces. The main theorem is the following: Let (X, r) be a separable metric space. Then the following are equivalent: (1) X admits an equivalent metric d such that (X, d) is an R-tree. (2) X is locally arcwise connected and uniquely arcwise connected. The method of proving that (2) implies (1) is to "improve" the metric r through a sequence of equivalent metrics of which the first is monotone one arcs, the second is strictly monotone on arcs, and the last is convex, as desired.</abstract><cop>Providence, RI</cop><pub>American Mathematical Society</pub><doi>10.2307/2159595</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 1992-05, Vol.115 (1), p.257-264, Article 257
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_2307_2159595
source American Mathematical Society Publications - Open Access; JSTOR Archival Journals and Primary Sources Collection
subjects Exact sciences and technology
General topology
Mathematical theorems
Mathematics
Metric spaces
Sciences and techniques of general use
Separable spaces
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Triangle inequalities
title Characterization of Separable Metric R-Trees
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Separable%20Metric%20R-Trees&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Mayer,%20J.%20C.&rft.date=1992-05-01&rft.volume=115&rft.issue=1&rft.spage=257&rft.epage=264&rft.pages=257-264&rft.artnum=257&rft.issn=0002-9939&rft.eissn=1088-6826&rft.coden=PAMYAR&rft_id=info:doi/10.2307/2159595&rft_dat=%3Cjstor_cross%3E2159595%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-80c70fb301cea7faf27b5bc5a91f820a1cdba3b3d52302e6b282e7f83380c4393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2159595&rfr_iscdi=true