Loading…

Extended Hazard Regression for Censored Survival Data with Covariates: A Spline Approximation for the Baseline Hazard Function

A regression model for censored survival data with covariates is introduced and termed extended hazard regression (EHR). EHR includes the proportional hazards (PH) and the accelerated failure time (AFT) models as special cases. By approximating the baseline hazard function with quadratic splines, we...

Full description

Saved in:
Bibliographic Details
Published in:Biometrics 1987-03, Vol.43 (1), p.181-192
Main Authors: Etezadi-Amoli, Jamshid, Ciampi, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c196t-1d2338eec311e195a281ef89efe052558b76006b05bcbe1469fe02c2fc48b3b73
cites
container_end_page 192
container_issue 1
container_start_page 181
container_title Biometrics
container_volume 43
creator Etezadi-Amoli, Jamshid
Ciampi, Antonio
description A regression model for censored survival data with covariates is introduced and termed extended hazard regression (EHR). EHR includes the proportional hazards (PH) and the accelerated failure time (AFT) models as special cases. By approximating the baseline hazard function with quadratic splines, we develop a maximum likelihood estimation procedure to provide a simultaneous estimate of both the hazard function and the regression coefficients. The AFT and PH assumptions can then be compared by likelihood ratio tests within the more general EHR model. Several examples based on artificial and real data are discussed.
doi_str_mv 10.2307/2531958
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_2531958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2531958</jstor_id><sourcerecordid>2531958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-1d2338eec311e195a281ef89efe052558b76006b05bcbe1469fe02c2fc48b3b73</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFbxL8xCcBWdRyYPdzW2VigIVsFdmExubErMhJlprC787U5t1ZWry-V8nHvPQeiUkgvGSXzJBKepSPbQgIqQBiRkZB8NCCFRwEP6fIiOrF36NRWEDdDneO2gLaHEU_khTYkf4MWAtbVucaUNzqC12nh5vjJ93csG30gn8VvtFjjTvTS1dGCv8AjPu6ZuAY-6zuh1_Srdj4VbAL6WFr7l3ZXJqlUb4BgdVLKxcLKbQ_Q0GT9m02B2f3uXjWaBomnkAloyzhMAxSkFn06yhEKVpFABEUyIpIgjH7AgolAF0DBKvcAUq1SYFLyI-RCdb32V0dYaqPLO-B_Ne05Jvqkt39XmybMt2UmrZFMZ2ara_uKxP0bS6A9bWqfNv25fG3Z4dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extended Hazard Regression for Censored Survival Data with Covariates: A Spline Approximation for the Baseline Hazard Function</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Etezadi-Amoli, Jamshid ; Ciampi, Antonio</creator><creatorcontrib>Etezadi-Amoli, Jamshid ; Ciampi, Antonio</creatorcontrib><description>A regression model for censored survival data with covariates is introduced and termed extended hazard regression (EHR). EHR includes the proportional hazards (PH) and the accelerated failure time (AFT) models as special cases. By approximating the baseline hazard function with quadratic splines, we develop a maximum likelihood estimation procedure to provide a simultaneous estimate of both the hazard function and the regression coefficients. The AFT and PH assumptions can then be compared by likelihood ratio tests within the more general EHR model. Several examples based on artificial and real data are discussed.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.2307/2531958</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, MA: Biometric Society</publisher><subject>Approximation ; Biological and medical sciences ; Biometrics ; Censored data ; Computerized, statistical medical data processing and models in biomedicine ; Datasets ; Inference ; Mathematical independent variables ; Maximum likelihood estimation ; Maximum likelihood estimators ; Medical sciences ; Medical statistics ; Polynomials ; Regression analysis</subject><ispartof>Biometrics, 1987-03, Vol.43 (1), p.181-192</ispartof><rights>Copyright 1987 The Biometric Society</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c196t-1d2338eec311e195a281ef89efe052558b76006b05bcbe1469fe02c2fc48b3b73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2531958$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2531958$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7558096$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Etezadi-Amoli, Jamshid</creatorcontrib><creatorcontrib>Ciampi, Antonio</creatorcontrib><title>Extended Hazard Regression for Censored Survival Data with Covariates: A Spline Approximation for the Baseline Hazard Function</title><title>Biometrics</title><description>A regression model for censored survival data with covariates is introduced and termed extended hazard regression (EHR). EHR includes the proportional hazards (PH) and the accelerated failure time (AFT) models as special cases. By approximating the baseline hazard function with quadratic splines, we develop a maximum likelihood estimation procedure to provide a simultaneous estimate of both the hazard function and the regression coefficients. The AFT and PH assumptions can then be compared by likelihood ratio tests within the more general EHR model. Several examples based on artificial and real data are discussed.</description><subject>Approximation</subject><subject>Biological and medical sciences</subject><subject>Biometrics</subject><subject>Censored data</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Datasets</subject><subject>Inference</subject><subject>Mathematical independent variables</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Medical sciences</subject><subject>Medical statistics</subject><subject>Polynomials</subject><subject>Regression analysis</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsFbxL8xCcBWdRyYPdzW2VigIVsFdmExubErMhJlprC787U5t1ZWry-V8nHvPQeiUkgvGSXzJBKepSPbQgIqQBiRkZB8NCCFRwEP6fIiOrF36NRWEDdDneO2gLaHEU_khTYkf4MWAtbVucaUNzqC12nh5vjJ93csG30gn8VvtFjjTvTS1dGCv8AjPu6ZuAY-6zuh1_Srdj4VbAL6WFr7l3ZXJqlUb4BgdVLKxcLKbQ_Q0GT9m02B2f3uXjWaBomnkAloyzhMAxSkFn06yhEKVpFABEUyIpIgjH7AgolAF0DBKvcAUq1SYFLyI-RCdb32V0dYaqPLO-B_Ne05Jvqkt39XmybMt2UmrZFMZ2ara_uKxP0bS6A9bWqfNv25fG3Z4dQ</recordid><startdate>19870301</startdate><enddate>19870301</enddate><creator>Etezadi-Amoli, Jamshid</creator><creator>Ciampi, Antonio</creator><general>Biometric Society</general><general>Blackwell</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19870301</creationdate><title>Extended Hazard Regression for Censored Survival Data with Covariates: A Spline Approximation for the Baseline Hazard Function</title><author>Etezadi-Amoli, Jamshid ; Ciampi, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-1d2338eec311e195a281ef89efe052558b76006b05bcbe1469fe02c2fc48b3b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Approximation</topic><topic>Biological and medical sciences</topic><topic>Biometrics</topic><topic>Censored data</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Datasets</topic><topic>Inference</topic><topic>Mathematical independent variables</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Medical sciences</topic><topic>Medical statistics</topic><topic>Polynomials</topic><topic>Regression analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Etezadi-Amoli, Jamshid</creatorcontrib><creatorcontrib>Ciampi, Antonio</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Etezadi-Amoli, Jamshid</au><au>Ciampi, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Hazard Regression for Censored Survival Data with Covariates: A Spline Approximation for the Baseline Hazard Function</atitle><jtitle>Biometrics</jtitle><date>1987-03-01</date><risdate>1987</risdate><volume>43</volume><issue>1</issue><spage>181</spage><epage>192</epage><pages>181-192</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>A regression model for censored survival data with covariates is introduced and termed extended hazard regression (EHR). EHR includes the proportional hazards (PH) and the accelerated failure time (AFT) models as special cases. By approximating the baseline hazard function with quadratic splines, we develop a maximum likelihood estimation procedure to provide a simultaneous estimate of both the hazard function and the regression coefficients. The AFT and PH assumptions can then be compared by likelihood ratio tests within the more general EHR model. Several examples based on artificial and real data are discussed.</abstract><cop>Malden, MA</cop><pub>Biometric Society</pub><doi>10.2307/2531958</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 1987-03, Vol.43 (1), p.181-192
issn 0006-341X
1541-0420
language eng
recordid cdi_crossref_primary_10_2307_2531958
source JSTOR Archival Journals and Primary Sources Collection
subjects Approximation
Biological and medical sciences
Biometrics
Censored data
Computerized, statistical medical data processing and models in biomedicine
Datasets
Inference
Mathematical independent variables
Maximum likelihood estimation
Maximum likelihood estimators
Medical sciences
Medical statistics
Polynomials
Regression analysis
title Extended Hazard Regression for Censored Survival Data with Covariates: A Spline Approximation for the Baseline Hazard Function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Hazard%20Regression%20for%20Censored%20Survival%20Data%20with%20Covariates:%20A%20Spline%20Approximation%20for%20the%20Baseline%20Hazard%20Function&rft.jtitle=Biometrics&rft.au=Etezadi-Amoli,%20Jamshid&rft.date=1987-03-01&rft.volume=43&rft.issue=1&rft.spage=181&rft.epage=192&rft.pages=181-192&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.2307/2531958&rft_dat=%3Cjstor_cross%3E2531958%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c196t-1d2338eec311e195a281ef89efe052558b76006b05bcbe1469fe02c2fc48b3b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2531958&rfr_iscdi=true