Loading…

The capacity of an intersection with non-stationary traffic

The average number of vehicles being able to enter an intersection per time unit from a minor road with a stop or yield sign — the capacity of the intersection — depends on the density of the traffic stream on the major road. In case the time-process of the major road traffic at the intersection is...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied probability 1976-06, Vol.13 (2), p.418-422
Main Author: Wegmann, Helmut
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c201t-947b8ad799e1f029a6cbe9109519c81298543867904d0e42ae0feadf9d5508313
cites cdi_FETCH-LOGICAL-c201t-947b8ad799e1f029a6cbe9109519c81298543867904d0e42ae0feadf9d5508313
container_end_page 422
container_issue 2
container_start_page 418
container_title Journal of applied probability
container_volume 13
creator Wegmann, Helmut
description The average number of vehicles being able to enter an intersection per time unit from a minor road with a stop or yield sign — the capacity of the intersection — depends on the density of the traffic stream on the major road. In case the time-process of the major road traffic at the intersection is a non-homogeneous Poisson process with a periodic intensity function the capacity is calculated and compared with the capacity in the homogeneous case.
doi_str_mv 10.2307/3212851
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_3212851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_2307_3212851</cupid><jstor_id>3212851</jstor_id><sourcerecordid>3212851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c201t-947b8ad799e1f029a6cbe9109519c81298543867904d0e42ae0feadf9d5508313</originalsourceid><addsrcrecordid>eNp9j01LAzEURYMoWKv4F7IQxEX0vcxkMsGVlPoBBTd1PWQyic1gMyWJSP-9Uzo7wc278Dhc7iHkGuGeFyAfCo68FnhCZlhKwSqQ_JTMADgyNd5zcpFSD4ClUHJGHtcbS43eaePzng6O6kB9yDYma7IfAv3xeUPDEFjK-vDQcU9z1M55c0nOnP5K9mrKOfl4Xq4Xr2z1_vK2eFoxwwEzU6Vsa91JpSw64EpXprUKQQlUpkaualEWdSUVlB3YkmsLzurOqU4IqAss5uT22GvikFK0rtlFvx2HNAjNwbmZnEfy5kj2KQ_xH-xuKtTbNvru0zb98B3DKPGH_QVl0V_r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The capacity of an intersection with non-stationary traffic</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Wegmann, Helmut</creator><creatorcontrib>Wegmann, Helmut</creatorcontrib><description>The average number of vehicles being able to enter an intersection per time unit from a minor road with a stop or yield sign — the capacity of the intersection — depends on the density of the traffic stream on the major road. In case the time-process of the major road traffic at the intersection is a non-homogeneous Poisson process with a periodic intensity function the capacity is calculated and compared with the capacity in the homogeneous case.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.2307/3212851</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Logical givens ; Motor vehicle traffic ; Poisson process ; Road intersections ; Roads ; Short Communications ; Traffic loads ; Vehicle capacity ; Vehicles</subject><ispartof>Journal of applied probability, 1976-06, Vol.13 (2), p.418-422</ispartof><rights>Copyright © Applied Probability Trust 1976</rights><rights>Copyright 1976 Applied Probability Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c201t-947b8ad799e1f029a6cbe9109519c81298543867904d0e42ae0feadf9d5508313</citedby><cites>FETCH-LOGICAL-c201t-947b8ad799e1f029a6cbe9109519c81298543867904d0e42ae0feadf9d5508313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3212851$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3212851$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Wegmann, Helmut</creatorcontrib><title>The capacity of an intersection with non-stationary traffic</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description>The average number of vehicles being able to enter an intersection per time unit from a minor road with a stop or yield sign — the capacity of the intersection — depends on the density of the traffic stream on the major road. In case the time-process of the major road traffic at the intersection is a non-homogeneous Poisson process with a periodic intensity function the capacity is calculated and compared with the capacity in the homogeneous case.</description><subject>Logical givens</subject><subject>Motor vehicle traffic</subject><subject>Poisson process</subject><subject>Road intersections</subject><subject>Roads</subject><subject>Short Communications</subject><subject>Traffic loads</subject><subject>Vehicle capacity</subject><subject>Vehicles</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><recordid>eNp9j01LAzEURYMoWKv4F7IQxEX0vcxkMsGVlPoBBTd1PWQyic1gMyWJSP-9Uzo7wc278Dhc7iHkGuGeFyAfCo68FnhCZlhKwSqQ_JTMADgyNd5zcpFSD4ClUHJGHtcbS43eaePzng6O6kB9yDYma7IfAv3xeUPDEFjK-vDQcU9z1M55c0nOnP5K9mrKOfl4Xq4Xr2z1_vK2eFoxwwEzU6Vsa91JpSw64EpXprUKQQlUpkaualEWdSUVlB3YkmsLzurOqU4IqAss5uT22GvikFK0rtlFvx2HNAjNwbmZnEfy5kj2KQ_xH-xuKtTbNvru0zb98B3DKPGH_QVl0V_r</recordid><startdate>197606</startdate><enddate>197606</enddate><creator>Wegmann, Helmut</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197606</creationdate><title>The capacity of an intersection with non-stationary traffic</title><author>Wegmann, Helmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c201t-947b8ad799e1f029a6cbe9109519c81298543867904d0e42ae0feadf9d5508313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><topic>Logical givens</topic><topic>Motor vehicle traffic</topic><topic>Poisson process</topic><topic>Road intersections</topic><topic>Roads</topic><topic>Short Communications</topic><topic>Traffic loads</topic><topic>Vehicle capacity</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wegmann, Helmut</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wegmann, Helmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The capacity of an intersection with non-stationary traffic</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>1976-06</date><risdate>1976</risdate><volume>13</volume><issue>2</issue><spage>418</spage><epage>422</epage><pages>418-422</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>The average number of vehicles being able to enter an intersection per time unit from a minor road with a stop or yield sign — the capacity of the intersection — depends on the density of the traffic stream on the major road. In case the time-process of the major road traffic at the intersection is a non-homogeneous Poisson process with a periodic intensity function the capacity is calculated and compared with the capacity in the homogeneous case.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.2307/3212851</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 1976-06, Vol.13 (2), p.418-422
issn 0021-9002
1475-6072
language eng
recordid cdi_crossref_primary_10_2307_3212851
source JSTOR Archival Journals and Primary Sources Collection
subjects Logical givens
Motor vehicle traffic
Poisson process
Road intersections
Roads
Short Communications
Traffic loads
Vehicle capacity
Vehicles
title The capacity of an intersection with non-stationary traffic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20capacity%20of%20an%20intersection%20with%20non-stationary%20traffic&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Wegmann,%20Helmut&rft.date=1976-06&rft.volume=13&rft.issue=2&rft.spage=418&rft.epage=422&rft.pages=418-422&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.2307/3212851&rft_dat=%3Cjstor_cross%3E3212851%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c201t-947b8ad799e1f029a6cbe9109519c81298543867904d0e42ae0feadf9d5508313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_2307_3212851&rft_jstor_id=3212851&rfr_iscdi=true