Loading…
Multipass laser hot-wire welding: Morphology and process robustness
There are great prospects for utilizing multipass laser hot-wire welding to join thick steel sheets, especially for techniques commonly performed in single passes, e.g., laser arc hybrid welding, fall short, presenting great opportunities for vehicle industries and offshore applications. Many modern...
Saved in:
Published in: | Journal of laser applications 2017-05, Vol.29 (2) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There are great prospects for utilizing multipass laser hot-wire welding to join thick steel sheets, especially for techniques commonly performed in single passes, e.g., laser arc hybrid welding, fall short, presenting great opportunities for vehicle industries and offshore applications. Many modern approaches for applying these techniques rely on customized wire feeding nozzles or special scanner optics to ensure proper laser–wire interactions and, in turn, robust process behavior, making them less accessible to many industries. Here, we present a modified adaption of laser hot-wire welding, utilizing more readily available equipment, including an unmodified welding source and a nozzle, presented and evaluated through means of, e.g., high speed imaging and macroscopy. This technique was found to have high process robustness, especially for sealing passes, if wire resistance heating is kept within suitable levels. It is able to both maintain proper laser–wire interaction and produce close to net-shape weld caps. Also, recommended process parameters are presented, together with a description of a potential method for suppressing solidification cracking. |
---|---|
ISSN: | 1042-346X 1938-1387 1938-1387 |
DOI: | 10.2351/1.4983758 |