Loading…
Cavitation Erosion and Solid Particle Erosion Behaviour of a Nitrogen Alloyed Austenitic Stainless Steel
The effect of grain size on solid particle erosion and cavitation erosion of a nitrogen alloyed austenitic stainless steel has been investigated. Heat treatment of the steel at elevated temperatures results in an increase in grain size and thus modification in mechanical properties. Particle erosion...
Saved in:
Published in: | ISIJ International 2015/05/15, Vol.55(5), pp.1123-1130 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effect of grain size on solid particle erosion and cavitation erosion of a nitrogen alloyed austenitic stainless steel has been investigated. Heat treatment of the steel at elevated temperatures results in an increase in grain size and thus modification in mechanical properties. Particle erosion tests were performed using an air jet erosion tester. An ultrasonic processor with a stationary specimen was used to investigate the cavitation erosion performance. The cavitation erosion rates were found to increase with the increase in grain size. The particle erosion rate shows no significant change with increase in grain size. The worn surfaces were examined to study the characteristic damage features using scanning electron microscope (SEM). The nitrogen alloyed austenitic stainless steel exhibited superior resistance to cavitation erosion and particle erosion than a 316L stainless steel. The hardness, yield strength and ultimate tensile strength of the steels are related with the erosion resistance. |
---|---|
ISSN: | 0915-1559 1347-5460 |
DOI: | 10.2355/isijinternational.55.1123 |