Loading…

Hydrogen Embrittlement Behavior of Ultra-high Strength Dual Phase Steel Sheet under Sustained Tensile-loading Test

The hydrogen embrittlement behavior of an ultra-high strength (1180 MPa grade) dual phase steel sheet composed of ferrite and tempered martensite, as compared with that of a single phase steel sheet composed of tempered martensite, has been investigated by a sustained tensile-loading test. No fractu...

Full description

Saved in:
Bibliographic Details
Published in:ISIJ International 2018/01/15, Vol.58(1), pp.173-178
Main Authors: Takashima, Katsutoshi, Yoshioka, Yuma, Yokoyama, Ken'ichi, Funakawa, Yoshimasa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hydrogen embrittlement behavior of an ultra-high strength (1180 MPa grade) dual phase steel sheet composed of ferrite and tempered martensite, as compared with that of a single phase steel sheet composed of tempered martensite, has been investigated by a sustained tensile-loading test. No fracture of the dual phase steel occurs under the low hydrogen-charging current density of 5 A/m2 except under high applied stress substantially larger than the yield stress. With the high current density of 50 A/m2, the time to fracture of the dual phase steel varies widely, but is almost the same as that of the single phase steel. The critical applied stress for fracture of the dual phase steel is higher than that of the single phase steel. Under the high applied stress, however, the time to fracture of the dual phase steel is shorter than that of the single phase steel, and a unique intergranular-like morphology is observed at the crack initiation area on the fracture surface. Upon plastic deformation before the sustained tensile-loading test under the high applied stress, the time to fracture of the dual phase steel increases and the initiation area on the fracture surface exhibits typical quasi-cleavage features. The results of the present study indicate that the hydrogen embrittlement of the dual phase steel displays some anomalous behavior.
ISSN:0915-1559
1347-5460
DOI:10.2355/isijinternational.ISIJINT-2017-315