Loading…
Fractographical Analyses of Crack Initiation Site in High-cycle Fatigue for Ti–Fe–O Alloy at Low Temperature
High-cycle fatigue properties of a Ti–Fe–O alloy with different processed products such as rolled plate (L and T), cross-rolled plate (CR) and groove-rolled bar (CS) were evaluated at 77 K and 293 K. Fine equiaxed α grains randomly oriented with [0001] perpendicular to tensile axis were produced in...
Saved in:
Published in: | ISIJ International 2018/07/15, Vol.58(7), pp.1332-1340 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c559t-51f6f24b37eec4fe83fcd325df2d4d40d1ffe465f2a6c51f9f3c7e815dd71f333 |
---|---|
cites | cdi_FETCH-LOGICAL-c559t-51f6f24b37eec4fe83fcd325df2d4d40d1ffe465f2a6c51f9f3c7e815dd71f333 |
container_end_page | 1340 |
container_issue | 7 |
container_start_page | 1332 |
container_title | ISIJ International |
container_volume | 58 |
creator | Umezawa, Osamu Yuasa, Takayuki Li, Weibo |
description | High-cycle fatigue properties of a Ti–Fe–O alloy with different processed products such as rolled plate (L and T), cross-rolled plate (CR) and groove-rolled bar (CS) were evaluated at 77 K and 293 K. Fine equiaxed α grains randomly oriented with [0001] perpendicular to tensile axis were produced in the CS. No significant difference of 107 cycles fatigue strength was recognized among the test materials at each temperature, although the CS exhibited an improved fatigue strength in long-life regime at 293 K. The subsurface crack initiation was dominant in lower stress level and at 77 K. The subsurface crack initiation sites consisted of facet or facets. The facets were identified as (0001) in the L, T and CR. In the CS, the (0001) facet provided an origin of subsurface crack initiation site, but the {10 1 0} facets mainly covered the sites at 77 K. The combination of shear stress and opening stress on {10 1 0} may be responsible for forming a facet and its growth in the neighboring grain. The dependence of subsurface crack initiation site size on the maximum stress range was evaluated, where the maximum stress intensity factor range, ΔKImax, revealed the temperature and stress dependences. |
doi_str_mv | 10.2355/isijinternational.ISIJINT-2017-673 |
format | article |
fullrecord | <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2355_isijinternational_ISIJINT_2017_673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_isijinternational_58_7_58_ISIJINT_2017_673_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-51f6f24b37eec4fe83fcd325df2d4d40d1ffe465f2a6c51f9f3c7e815dd71f333</originalsourceid><addsrcrecordid>eNptkMFOAjEQQBujiQT5h55NFrfbdheOSFxZQ-QAJt6a0p1CcdklbYnZm__gH_olFiEc1MvMYWbezDyEbkncTyjnd8aZjak92Fp609Sy6hfz4ql4XkRJTLIozegF6hDKsoizNL5EnXhIeEQ4H16jnnNmGccJGzBKaAftciuVb1ZW7tZGyQqPAq914HCj8TjU3nBRG29-NuG58YBNjSdmtY5UqyrAeais9oB1Y_HCfH185hDCDI-qqmmx9HjavOMFbHdgpd9buEFXWlYOeqfcRS_5w2I8iaazx2I8mkYq3OkjTnSqE7akGYBiGgZUq5ImvNRJyUoWl0RrYCnXiUxVaB5qqjIYEF6WGdGU0i66P3KVbZyzoMXOmq20rSCxOGgUfzSKk0Zx0CiCxgB5PUI2zssVnBHSehOe_wfBByI7hN-o84haSyugpt_hfpKv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fractographical Analyses of Crack Initiation Site in High-cycle Fatigue for Ti–Fe–O Alloy at Low Temperature</title><source>Free Full-Text Journals in Chemistry</source><creator>Umezawa, Osamu ; Yuasa, Takayuki ; Li, Weibo</creator><creatorcontrib>Umezawa, Osamu ; Yuasa, Takayuki ; Li, Weibo</creatorcontrib><description>High-cycle fatigue properties of a Ti–Fe–O alloy with different processed products such as rolled plate (L and T), cross-rolled plate (CR) and groove-rolled bar (CS) were evaluated at 77 K and 293 K. Fine equiaxed α grains randomly oriented with [0001] perpendicular to tensile axis were produced in the CS. No significant difference of 107 cycles fatigue strength was recognized among the test materials at each temperature, although the CS exhibited an improved fatigue strength in long-life regime at 293 K. The subsurface crack initiation was dominant in lower stress level and at 77 K. The subsurface crack initiation sites consisted of facet or facets. The facets were identified as (0001) in the L, T and CR. In the CS, the (0001) facet provided an origin of subsurface crack initiation site, but the {10 1 0} facets mainly covered the sites at 77 K. The combination of shear stress and opening stress on {10 1 0} may be responsible for forming a facet and its growth in the neighboring grain. The dependence of subsurface crack initiation site size on the maximum stress range was evaluated, where the maximum stress intensity factor range, ΔKImax, revealed the temperature and stress dependences.</description><identifier>ISSN: 0915-1559</identifier><identifier>EISSN: 1347-5460</identifier><identifier>DOI: 10.2355/isijinternational.ISIJINT-2017-673</identifier><language>eng</language><publisher>The Iron and Steel Institute of Japan</publisher><subject>fatigue ; low temperature ; macrozone ; subsurface crack initiation ; texture ; titanium alloys ; transgranular crack</subject><ispartof>ISIJ International, 2018/07/15, Vol.58(7), pp.1332-1340</ispartof><rights>2018 by The Iron and Steel Institute of Japan</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-51f6f24b37eec4fe83fcd325df2d4d40d1ffe465f2a6c51f9f3c7e815dd71f333</citedby><cites>FETCH-LOGICAL-c559t-51f6f24b37eec4fe83fcd325df2d4d40d1ffe465f2a6c51f9f3c7e815dd71f333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Umezawa, Osamu</creatorcontrib><creatorcontrib>Yuasa, Takayuki</creatorcontrib><creatorcontrib>Li, Weibo</creatorcontrib><title>Fractographical Analyses of Crack Initiation Site in High-cycle Fatigue for Ti–Fe–O Alloy at Low Temperature</title><title>ISIJ International</title><addtitle>ISIJ Int.</addtitle><description>High-cycle fatigue properties of a Ti–Fe–O alloy with different processed products such as rolled plate (L and T), cross-rolled plate (CR) and groove-rolled bar (CS) were evaluated at 77 K and 293 K. Fine equiaxed α grains randomly oriented with [0001] perpendicular to tensile axis were produced in the CS. No significant difference of 107 cycles fatigue strength was recognized among the test materials at each temperature, although the CS exhibited an improved fatigue strength in long-life regime at 293 K. The subsurface crack initiation was dominant in lower stress level and at 77 K. The subsurface crack initiation sites consisted of facet or facets. The facets were identified as (0001) in the L, T and CR. In the CS, the (0001) facet provided an origin of subsurface crack initiation site, but the {10 1 0} facets mainly covered the sites at 77 K. The combination of shear stress and opening stress on {10 1 0} may be responsible for forming a facet and its growth in the neighboring grain. The dependence of subsurface crack initiation site size on the maximum stress range was evaluated, where the maximum stress intensity factor range, ΔKImax, revealed the temperature and stress dependences.</description><subject>fatigue</subject><subject>low temperature</subject><subject>macrozone</subject><subject>subsurface crack initiation</subject><subject>texture</subject><subject>titanium alloys</subject><subject>transgranular crack</subject><issn>0915-1559</issn><issn>1347-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkMFOAjEQQBujiQT5h55NFrfbdheOSFxZQ-QAJt6a0p1CcdklbYnZm__gH_olFiEc1MvMYWbezDyEbkncTyjnd8aZjak92Fp609Sy6hfz4ql4XkRJTLIozegF6hDKsoizNL5EnXhIeEQ4H16jnnNmGccJGzBKaAftciuVb1ZW7tZGyQqPAq914HCj8TjU3nBRG29-NuG58YBNjSdmtY5UqyrAeais9oB1Y_HCfH185hDCDI-qqmmx9HjavOMFbHdgpd9buEFXWlYOeqfcRS_5w2I8iaazx2I8mkYq3OkjTnSqE7akGYBiGgZUq5ImvNRJyUoWl0RrYCnXiUxVaB5qqjIYEF6WGdGU0i66P3KVbZyzoMXOmq20rSCxOGgUfzSKk0Zx0CiCxgB5PUI2zssVnBHSehOe_wfBByI7hN-o84haSyugpt_hfpKv</recordid><startdate>20180715</startdate><enddate>20180715</enddate><creator>Umezawa, Osamu</creator><creator>Yuasa, Takayuki</creator><creator>Li, Weibo</creator><general>The Iron and Steel Institute of Japan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180715</creationdate><title>Fractographical Analyses of Crack Initiation Site in High-cycle Fatigue for Ti–Fe–O Alloy at Low Temperature</title><author>Umezawa, Osamu ; Yuasa, Takayuki ; Li, Weibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-51f6f24b37eec4fe83fcd325df2d4d40d1ffe465f2a6c51f9f3c7e815dd71f333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>fatigue</topic><topic>low temperature</topic><topic>macrozone</topic><topic>subsurface crack initiation</topic><topic>texture</topic><topic>titanium alloys</topic><topic>transgranular crack</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Umezawa, Osamu</creatorcontrib><creatorcontrib>Yuasa, Takayuki</creatorcontrib><creatorcontrib>Li, Weibo</creatorcontrib><collection>CrossRef</collection><jtitle>ISIJ International</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Umezawa, Osamu</au><au>Yuasa, Takayuki</au><au>Li, Weibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractographical Analyses of Crack Initiation Site in High-cycle Fatigue for Ti–Fe–O Alloy at Low Temperature</atitle><jtitle>ISIJ International</jtitle><addtitle>ISIJ Int.</addtitle><date>2018-07-15</date><risdate>2018</risdate><volume>58</volume><issue>7</issue><spage>1332</spage><epage>1340</epage><pages>1332-1340</pages><issn>0915-1559</issn><eissn>1347-5460</eissn><abstract>High-cycle fatigue properties of a Ti–Fe–O alloy with different processed products such as rolled plate (L and T), cross-rolled plate (CR) and groove-rolled bar (CS) were evaluated at 77 K and 293 K. Fine equiaxed α grains randomly oriented with [0001] perpendicular to tensile axis were produced in the CS. No significant difference of 107 cycles fatigue strength was recognized among the test materials at each temperature, although the CS exhibited an improved fatigue strength in long-life regime at 293 K. The subsurface crack initiation was dominant in lower stress level and at 77 K. The subsurface crack initiation sites consisted of facet or facets. The facets were identified as (0001) in the L, T and CR. In the CS, the (0001) facet provided an origin of subsurface crack initiation site, but the {10 1 0} facets mainly covered the sites at 77 K. The combination of shear stress and opening stress on {10 1 0} may be responsible for forming a facet and its growth in the neighboring grain. The dependence of subsurface crack initiation site size on the maximum stress range was evaluated, where the maximum stress intensity factor range, ΔKImax, revealed the temperature and stress dependences.</abstract><pub>The Iron and Steel Institute of Japan</pub><doi>10.2355/isijinternational.ISIJINT-2017-673</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0915-1559 |
ispartof | ISIJ International, 2018/07/15, Vol.58(7), pp.1332-1340 |
issn | 0915-1559 1347-5460 |
language | eng |
recordid | cdi_crossref_primary_10_2355_isijinternational_ISIJINT_2017_673 |
source | Free Full-Text Journals in Chemistry |
subjects | fatigue low temperature macrozone subsurface crack initiation texture titanium alloys transgranular crack |
title | Fractographical Analyses of Crack Initiation Site in High-cycle Fatigue for Ti–Fe–O Alloy at Low Temperature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractographical%20Analyses%20of%20Crack%20Initiation%20Site%20in%20High-cycle%20Fatigue%20for%20Ti%E2%80%93Fe%E2%80%93O%20Alloy%20at%20Low%20Temperature&rft.jtitle=ISIJ%20International&rft.au=Umezawa,%20Osamu&rft.date=2018-07-15&rft.volume=58&rft.issue=7&rft.spage=1332&rft.epage=1340&rft.pages=1332-1340&rft.issn=0915-1559&rft.eissn=1347-5460&rft_id=info:doi/10.2355/isijinternational.ISIJINT-2017-673&rft_dat=%3Cjstage_cross%3Earticle_isijinternational_58_7_58_ISIJINT_2017_673_article_char_en%3C/jstage_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c559t-51f6f24b37eec4fe83fcd325df2d4d40d1ffe465f2a6c51f9f3c7e815dd71f333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |