Loading…

Fractographical Analyses of Crack Initiation Site in High-cycle Fatigue for Ti–Fe–O Alloy at Low Temperature

High-cycle fatigue properties of a Ti–Fe–O alloy with different processed products such as rolled plate (L and T), cross-rolled plate (CR) and groove-rolled bar (CS) were evaluated at 77 K and 293 K. Fine equiaxed α grains randomly oriented with [0001] perpendicular to tensile axis were produced in...

Full description

Saved in:
Bibliographic Details
Published in:ISIJ International 2018/07/15, Vol.58(7), pp.1332-1340
Main Authors: Umezawa, Osamu, Yuasa, Takayuki, Li, Weibo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c559t-51f6f24b37eec4fe83fcd325df2d4d40d1ffe465f2a6c51f9f3c7e815dd71f333
cites cdi_FETCH-LOGICAL-c559t-51f6f24b37eec4fe83fcd325df2d4d40d1ffe465f2a6c51f9f3c7e815dd71f333
container_end_page 1340
container_issue 7
container_start_page 1332
container_title ISIJ International
container_volume 58
creator Umezawa, Osamu
Yuasa, Takayuki
Li, Weibo
description High-cycle fatigue properties of a Ti–Fe–O alloy with different processed products such as rolled plate (L and T), cross-rolled plate (CR) and groove-rolled bar (CS) were evaluated at 77 K and 293 K. Fine equiaxed α grains randomly oriented with [0001] perpendicular to tensile axis were produced in the CS. No significant difference of 107 cycles fatigue strength was recognized among the test materials at each temperature, although the CS exhibited an improved fatigue strength in long-life regime at 293 K. The subsurface crack initiation was dominant in lower stress level and at 77 K. The subsurface crack initiation sites consisted of facet or facets. The facets were identified as (0001) in the L, T and CR. In the CS, the (0001) facet provided an origin of subsurface crack initiation site, but the {10 1 0} facets mainly covered the sites at 77 K. The combination of shear stress and opening stress on {10 1 0} may be responsible for forming a facet and its growth in the neighboring grain. The dependence of subsurface crack initiation site size on the maximum stress range was evaluated, where the maximum stress intensity factor range, ΔKImax, revealed the temperature and stress dependences.
doi_str_mv 10.2355/isijinternational.ISIJINT-2017-673
format article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2355_isijinternational_ISIJINT_2017_673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_isijinternational_58_7_58_ISIJINT_2017_673_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-51f6f24b37eec4fe83fcd325df2d4d40d1ffe465f2a6c51f9f3c7e815dd71f333</originalsourceid><addsrcrecordid>eNptkMFOAjEQQBujiQT5h55NFrfbdheOSFxZQ-QAJt6a0p1CcdklbYnZm__gH_olFiEc1MvMYWbezDyEbkncTyjnd8aZjak92Fp609Sy6hfz4ql4XkRJTLIozegF6hDKsoizNL5EnXhIeEQ4H16jnnNmGccJGzBKaAftciuVb1ZW7tZGyQqPAq914HCj8TjU3nBRG29-NuG58YBNjSdmtY5UqyrAeais9oB1Y_HCfH185hDCDI-qqmmx9HjavOMFbHdgpd9buEFXWlYOeqfcRS_5w2I8iaazx2I8mkYq3OkjTnSqE7akGYBiGgZUq5ImvNRJyUoWl0RrYCnXiUxVaB5qqjIYEF6WGdGU0i66P3KVbZyzoMXOmq20rSCxOGgUfzSKk0Zx0CiCxgB5PUI2zssVnBHSehOe_wfBByI7hN-o84haSyugpt_hfpKv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fractographical Analyses of Crack Initiation Site in High-cycle Fatigue for Ti–Fe–O Alloy at Low Temperature</title><source>Free Full-Text Journals in Chemistry</source><creator>Umezawa, Osamu ; Yuasa, Takayuki ; Li, Weibo</creator><creatorcontrib>Umezawa, Osamu ; Yuasa, Takayuki ; Li, Weibo</creatorcontrib><description>High-cycle fatigue properties of a Ti–Fe–O alloy with different processed products such as rolled plate (L and T), cross-rolled plate (CR) and groove-rolled bar (CS) were evaluated at 77 K and 293 K. Fine equiaxed α grains randomly oriented with [0001] perpendicular to tensile axis were produced in the CS. No significant difference of 107 cycles fatigue strength was recognized among the test materials at each temperature, although the CS exhibited an improved fatigue strength in long-life regime at 293 K. The subsurface crack initiation was dominant in lower stress level and at 77 K. The subsurface crack initiation sites consisted of facet or facets. The facets were identified as (0001) in the L, T and CR. In the CS, the (0001) facet provided an origin of subsurface crack initiation site, but the {10 1 0} facets mainly covered the sites at 77 K. The combination of shear stress and opening stress on {10 1 0} may be responsible for forming a facet and its growth in the neighboring grain. The dependence of subsurface crack initiation site size on the maximum stress range was evaluated, where the maximum stress intensity factor range, ΔKImax, revealed the temperature and stress dependences.</description><identifier>ISSN: 0915-1559</identifier><identifier>EISSN: 1347-5460</identifier><identifier>DOI: 10.2355/isijinternational.ISIJINT-2017-673</identifier><language>eng</language><publisher>The Iron and Steel Institute of Japan</publisher><subject>fatigue ; low temperature ; macrozone ; subsurface crack initiation ; texture ; titanium alloys ; transgranular crack</subject><ispartof>ISIJ International, 2018/07/15, Vol.58(7), pp.1332-1340</ispartof><rights>2018 by The Iron and Steel Institute of Japan</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-51f6f24b37eec4fe83fcd325df2d4d40d1ffe465f2a6c51f9f3c7e815dd71f333</citedby><cites>FETCH-LOGICAL-c559t-51f6f24b37eec4fe83fcd325df2d4d40d1ffe465f2a6c51f9f3c7e815dd71f333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Umezawa, Osamu</creatorcontrib><creatorcontrib>Yuasa, Takayuki</creatorcontrib><creatorcontrib>Li, Weibo</creatorcontrib><title>Fractographical Analyses of Crack Initiation Site in High-cycle Fatigue for Ti–Fe–O Alloy at Low Temperature</title><title>ISIJ International</title><addtitle>ISIJ Int.</addtitle><description>High-cycle fatigue properties of a Ti–Fe–O alloy with different processed products such as rolled plate (L and T), cross-rolled plate (CR) and groove-rolled bar (CS) were evaluated at 77 K and 293 K. Fine equiaxed α grains randomly oriented with [0001] perpendicular to tensile axis were produced in the CS. No significant difference of 107 cycles fatigue strength was recognized among the test materials at each temperature, although the CS exhibited an improved fatigue strength in long-life regime at 293 K. The subsurface crack initiation was dominant in lower stress level and at 77 K. The subsurface crack initiation sites consisted of facet or facets. The facets were identified as (0001) in the L, T and CR. In the CS, the (0001) facet provided an origin of subsurface crack initiation site, but the {10 1 0} facets mainly covered the sites at 77 K. The combination of shear stress and opening stress on {10 1 0} may be responsible for forming a facet and its growth in the neighboring grain. The dependence of subsurface crack initiation site size on the maximum stress range was evaluated, where the maximum stress intensity factor range, ΔKImax, revealed the temperature and stress dependences.</description><subject>fatigue</subject><subject>low temperature</subject><subject>macrozone</subject><subject>subsurface crack initiation</subject><subject>texture</subject><subject>titanium alloys</subject><subject>transgranular crack</subject><issn>0915-1559</issn><issn>1347-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkMFOAjEQQBujiQT5h55NFrfbdheOSFxZQ-QAJt6a0p1CcdklbYnZm__gH_olFiEc1MvMYWbezDyEbkncTyjnd8aZjak92Fp609Sy6hfz4ql4XkRJTLIozegF6hDKsoizNL5EnXhIeEQ4H16jnnNmGccJGzBKaAftciuVb1ZW7tZGyQqPAq914HCj8TjU3nBRG29-NuG58YBNjSdmtY5UqyrAeais9oB1Y_HCfH185hDCDI-qqmmx9HjavOMFbHdgpd9buEFXWlYOeqfcRS_5w2I8iaazx2I8mkYq3OkjTnSqE7akGYBiGgZUq5ImvNRJyUoWl0RrYCnXiUxVaB5qqjIYEF6WGdGU0i66P3KVbZyzoMXOmq20rSCxOGgUfzSKk0Zx0CiCxgB5PUI2zssVnBHSehOe_wfBByI7hN-o84haSyugpt_hfpKv</recordid><startdate>20180715</startdate><enddate>20180715</enddate><creator>Umezawa, Osamu</creator><creator>Yuasa, Takayuki</creator><creator>Li, Weibo</creator><general>The Iron and Steel Institute of Japan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180715</creationdate><title>Fractographical Analyses of Crack Initiation Site in High-cycle Fatigue for Ti–Fe–O Alloy at Low Temperature</title><author>Umezawa, Osamu ; Yuasa, Takayuki ; Li, Weibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-51f6f24b37eec4fe83fcd325df2d4d40d1ffe465f2a6c51f9f3c7e815dd71f333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>fatigue</topic><topic>low temperature</topic><topic>macrozone</topic><topic>subsurface crack initiation</topic><topic>texture</topic><topic>titanium alloys</topic><topic>transgranular crack</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Umezawa, Osamu</creatorcontrib><creatorcontrib>Yuasa, Takayuki</creatorcontrib><creatorcontrib>Li, Weibo</creatorcontrib><collection>CrossRef</collection><jtitle>ISIJ International</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Umezawa, Osamu</au><au>Yuasa, Takayuki</au><au>Li, Weibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractographical Analyses of Crack Initiation Site in High-cycle Fatigue for Ti–Fe–O Alloy at Low Temperature</atitle><jtitle>ISIJ International</jtitle><addtitle>ISIJ Int.</addtitle><date>2018-07-15</date><risdate>2018</risdate><volume>58</volume><issue>7</issue><spage>1332</spage><epage>1340</epage><pages>1332-1340</pages><issn>0915-1559</issn><eissn>1347-5460</eissn><abstract>High-cycle fatigue properties of a Ti–Fe–O alloy with different processed products such as rolled plate (L and T), cross-rolled plate (CR) and groove-rolled bar (CS) were evaluated at 77 K and 293 K. Fine equiaxed α grains randomly oriented with [0001] perpendicular to tensile axis were produced in the CS. No significant difference of 107 cycles fatigue strength was recognized among the test materials at each temperature, although the CS exhibited an improved fatigue strength in long-life regime at 293 K. The subsurface crack initiation was dominant in lower stress level and at 77 K. The subsurface crack initiation sites consisted of facet or facets. The facets were identified as (0001) in the L, T and CR. In the CS, the (0001) facet provided an origin of subsurface crack initiation site, but the {10 1 0} facets mainly covered the sites at 77 K. The combination of shear stress and opening stress on {10 1 0} may be responsible for forming a facet and its growth in the neighboring grain. The dependence of subsurface crack initiation site size on the maximum stress range was evaluated, where the maximum stress intensity factor range, ΔKImax, revealed the temperature and stress dependences.</abstract><pub>The Iron and Steel Institute of Japan</pub><doi>10.2355/isijinternational.ISIJINT-2017-673</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0915-1559
ispartof ISIJ International, 2018/07/15, Vol.58(7), pp.1332-1340
issn 0915-1559
1347-5460
language eng
recordid cdi_crossref_primary_10_2355_isijinternational_ISIJINT_2017_673
source Free Full-Text Journals in Chemistry
subjects fatigue
low temperature
macrozone
subsurface crack initiation
texture
titanium alloys
transgranular crack
title Fractographical Analyses of Crack Initiation Site in High-cycle Fatigue for Ti–Fe–O Alloy at Low Temperature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractographical%20Analyses%20of%20Crack%20Initiation%20Site%20in%20High-cycle%20Fatigue%20for%20Ti%E2%80%93Fe%E2%80%93O%20Alloy%20at%20Low%20Temperature&rft.jtitle=ISIJ%20International&rft.au=Umezawa,%20Osamu&rft.date=2018-07-15&rft.volume=58&rft.issue=7&rft.spage=1332&rft.epage=1340&rft.pages=1332-1340&rft.issn=0915-1559&rft.eissn=1347-5460&rft_id=info:doi/10.2355/isijinternational.ISIJINT-2017-673&rft_dat=%3Cjstage_cross%3Earticle_isijinternational_58_7_58_ISIJINT_2017_673_article_char_en%3C/jstage_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c559t-51f6f24b37eec4fe83fcd325df2d4d40d1ffe465f2a6c51f9f3c7e815dd71f333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true