Loading…

Microstructure Evolution and Mechanical Properties Improvement in Magnetic-controlled Electroslag Remelted Bearing Steel

The transverse static magnetic field (TSMF) was introduced into the electroslag remelting (ESR) process to produce GCr15 steel ingots and the microstructure, non-metallic inclusions, chemical composition and mechanical properties of the ingots were analyzed to investigate the effect of TSMF during t...

Full description

Saved in:
Bibliographic Details
Published in:ISIJ International 2020/11/15, Vol.60(11), pp.2462-2470
Main Authors: Li, Qiang, Xia, Zhibin, Guo, Yifeng, Shen, Zhe, Zheng, Tianxiang, Zhong, Yunbo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The transverse static magnetic field (TSMF) was introduced into the electroslag remelting (ESR) process to produce GCr15 steel ingots and the microstructure, non-metallic inclusions, chemical composition and mechanical properties of the ingots were analyzed to investigate the effect of TSMF during the ESR process. The transverse section of the ingots indicated that the application of a 130 mT static magnetic field resulted in a refined dendritic structure. The coverage ratio of the homogeneous crystallites area in the center of the transverse section increased to 52%. The metallic solid-liquid interface with different magnetic flux density (MFD) was recorded during ESR process. The depth of the metallic molten pool was 44.2 mm without the TSMF. When a 130 mT TSMF was applied, the molten pool became noticeably shallower (14.2 mm). And the oxide inclusions count in the scan area of 5.117 mm2 decreased to 239 from 1212. When the TSMF implemented, the tensile, friction and wear and Rockwell hardness properties of ingots showed a significant improvement. These results showed that the application of TSMF during the ESR process of GCr15 steel not only refine the dendritic structure, but also improve the efficiency of inclusion removal and mechanical properties.
ISSN:0915-1559
1347-5460
DOI:10.2355/isijinternational.ISIJINT-2020-173