Loading…
Kinetic Analysis Considering Particle Size Distribution on Ca Elution from Slags in CaO–SiO2–MgO–Al2O3–Fe2O3 System
The understanding of the behavior of alkali elution from slags is important for their effective recycling and utilization. In a previous study, it was reported that the addition of iron oxide to steel slags significantly inhibited alkali elution. A lower modified basicity, i.e., CaO/(SiO2 + Fe2O3) r...
Saved in:
Published in: | ISIJ International 2020/12/15, Vol.60(12), pp.2859-2869 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The understanding of the behavior of alkali elution from slags is important for their effective recycling and utilization. In a previous study, it was reported that the addition of iron oxide to steel slags significantly inhibited alkali elution. A lower modified basicity, i.e., CaO/(SiO2 + Fe2O3) ratio, indicates a lower alkali elution from the slags. In addition to the effect of Fe2O3 content, particle size distribution is an important parameter to determine the elution of Ca quantitatively.In this study, a kinetic model considering particle size distribution is developed and applied to the results of a dissolution experiment using samples of a slag, which is designated as SlagF4, with different particle size distributions. In the new kinetic model, an effective surface area and the effectiveness of total surface area α are introduced, and a kinetic analysis is performed. The rate constant k obtained is a fixed value for one sample type; k decreased with the increase in Fe2O3 content.The values of α increased significantly with the increase in the total surface area ST (i.e., a decrease in particle diameter) in different particle size distributions. It is discovered that α typically represents the Ca elution tendency. Additionally, the change in α is small with the change in the Fe2O3 content. It is demonstrated that the developed kinetic model is valid for the analysis of Ca elution for samples with different particle size distributions. |
---|---|
ISSN: | 0915-1559 1347-5460 |
DOI: | 10.2355/isijinternational.ISIJINT-2020-265 |