Loading…

Iterative Convergence for Solving the Exit Plastic Zone and Friction Coefficient Model of Ultra-thin Strip Rolling Force

For the analytical model of rolling force of ultra-thin strip, the iterative conditions of the exit plastic zone are improved to solve the convergence problem of the Fleck model in small reduction rolling. The nonlinear law of friction coefficient in multi-pass rolling is analyzed, and the friction...

Full description

Saved in:
Bibliographic Details
Published in:ISIJ International 2024/11/15, Vol.64(13), pp.1899-1908
Main Authors: Zhang, Jie, Wang, Tao, Wang, Zhenhua, Liu, Xiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3244-12747952c0f3e3f404eeb0462ad38c6539be2a43a3fe5d04ed73b28b5ce672743
container_end_page 1908
container_issue 13
container_start_page 1899
container_title ISIJ International
container_volume 64
creator Zhang, Jie
Wang, Tao
Wang, Zhenhua
Liu, Xiao
description For the analytical model of rolling force of ultra-thin strip, the iterative conditions of the exit plastic zone are improved to solve the convergence problem of the Fleck model in small reduction rolling. The nonlinear law of friction coefficient in multi-pass rolling is analyzed, and the friction coefficient database for sample data is established through the friction coefficient calculation model, which is used GWO-KELM neural network training friction coefficient prediction model, the Fleck rolling force prediction model based on the modified friction coefficient is established ultimately. A comparative analysis of prediction errors is conducted on three different specifications of strip steel using actual production data from a multifunctional 280 mm 20-high mill. The results show that the best performing MSE, RMSE, MAE, MAPE and R2, with values of 170.48, 13.06 kN, 9.01 kN, 3.30%, and 0.989, respectively. The accuracy of the modified rolling force prediction model is significantly improved, and the data scale of friction coefficient database can be continuously expanded, so the accuracy of the rolling force prediction model can be continuously improved.
doi_str_mv 10.2355/isijinternational.ISIJINT-2024-214
format article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2355_isijinternational_ISIJINT_2024_214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_isijinternational_64_13_64_ISIJINT_2024_214_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3244-12747952c0f3e3f404eeb0462ad38c6539be2a43a3fe5d04ed73b28b5ce672743</originalsourceid><addsrcrecordid>eNpt0MtKAzEUgOEgChb1HbIWRnOdaZdarI54w-pCNyGTOWkjMZFMKPr2ZlBcqJtkkXM-wo_QISVHjEt57Ab34kKGFHR2MWh_1C7by_bmoWKEiYpRsYUmlIumkqIm22hCZlRWVMrZLjoYBteRMjYVnPIJem-LU5gN4HkMG0grCAawjQkvo9-4sMJ5Dfjs3WV85_WQncHPMQDWoceL5Mz4g7IK1jrjIGR8HXvwOFr86HPSVV67gJc5uTd8H70fwUVMBvbRjtV-gIPvew89Ls4e5hfV1e15Oz-5qgxnQlSUNaKZSWaI5cCtIAKgI6JmuudTU0s-64BpwTW3IPvy2je8Y9NOGqibssv30OmXa1IchgRWvSX3qtOHokSNOdWfnOo7pxpzqpKzIE9fyMuQ9Qp-CJ1KDw__ELVQlI_nb-tnx6x1UhD4J6vlkts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Iterative Convergence for Solving the Exit Plastic Zone and Friction Coefficient Model of Ultra-thin Strip Rolling Force</title><source>Full-Text Journals in Chemistry (Open access)</source><creator>Zhang, Jie ; Wang, Tao ; Wang, Zhenhua ; Liu, Xiao</creator><creatorcontrib>Zhang, Jie ; Wang, Tao ; Wang, Zhenhua ; Liu, Xiao</creatorcontrib><description>For the analytical model of rolling force of ultra-thin strip, the iterative conditions of the exit plastic zone are improved to solve the convergence problem of the Fleck model in small reduction rolling. The nonlinear law of friction coefficient in multi-pass rolling is analyzed, and the friction coefficient database for sample data is established through the friction coefficient calculation model, which is used GWO-KELM neural network training friction coefficient prediction model, the Fleck rolling force prediction model based on the modified friction coefficient is established ultimately. A comparative analysis of prediction errors is conducted on three different specifications of strip steel using actual production data from a multifunctional 280 mm 20-high mill. The results show that the best performing MSE, RMSE, MAE, MAPE and R2, with values of 170.48, 13.06 kN, 9.01 kN, 3.30%, and 0.989, respectively. The accuracy of the modified rolling force prediction model is significantly improved, and the data scale of friction coefficient database can be continuously expanded, so the accuracy of the rolling force prediction model can be continuously improved.</description><identifier>ISSN: 0915-1559</identifier><identifier>EISSN: 1347-5460</identifier><identifier>DOI: 10.2355/isijinternational.ISIJINT-2024-214</identifier><language>eng</language><publisher>The Iron and Steel Institute of Japan</publisher><subject>Fleck theory ; frictional coefficient model ; GWO-KELM neural network ; rolling force prediction model ; ultra-thin strip</subject><ispartof>ISIJ International, 2024/11/15, Vol.64(13), pp.1899-1908</ispartof><rights>2024 The Iron and Steel Institute of Japan.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3244-12747952c0f3e3f404eeb0462ad38c6539be2a43a3fe5d04ed73b28b5ce672743</cites><orcidid>0000-0002-4294-9690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wang, Zhenhua</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><title>Iterative Convergence for Solving the Exit Plastic Zone and Friction Coefficient Model of Ultra-thin Strip Rolling Force</title><title>ISIJ International</title><addtitle>ISIJ Int.</addtitle><description>For the analytical model of rolling force of ultra-thin strip, the iterative conditions of the exit plastic zone are improved to solve the convergence problem of the Fleck model in small reduction rolling. The nonlinear law of friction coefficient in multi-pass rolling is analyzed, and the friction coefficient database for sample data is established through the friction coefficient calculation model, which is used GWO-KELM neural network training friction coefficient prediction model, the Fleck rolling force prediction model based on the modified friction coefficient is established ultimately. A comparative analysis of prediction errors is conducted on three different specifications of strip steel using actual production data from a multifunctional 280 mm 20-high mill. The results show that the best performing MSE, RMSE, MAE, MAPE and R2, with values of 170.48, 13.06 kN, 9.01 kN, 3.30%, and 0.989, respectively. The accuracy of the modified rolling force prediction model is significantly improved, and the data scale of friction coefficient database can be continuously expanded, so the accuracy of the rolling force prediction model can be continuously improved.</description><subject>Fleck theory</subject><subject>frictional coefficient model</subject><subject>GWO-KELM neural network</subject><subject>rolling force prediction model</subject><subject>ultra-thin strip</subject><issn>0915-1559</issn><issn>1347-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpt0MtKAzEUgOEgChb1HbIWRnOdaZdarI54w-pCNyGTOWkjMZFMKPr2ZlBcqJtkkXM-wo_QISVHjEt57Ab34kKGFHR2MWh_1C7by_bmoWKEiYpRsYUmlIumkqIm22hCZlRWVMrZLjoYBteRMjYVnPIJem-LU5gN4HkMG0grCAawjQkvo9-4sMJ5Dfjs3WV85_WQncHPMQDWoceL5Mz4g7IK1jrjIGR8HXvwOFr86HPSVV67gJc5uTd8H70fwUVMBvbRjtV-gIPvew89Ls4e5hfV1e15Oz-5qgxnQlSUNaKZSWaI5cCtIAKgI6JmuudTU0s-64BpwTW3IPvy2je8Y9NOGqibssv30OmXa1IchgRWvSX3qtOHokSNOdWfnOo7pxpzqpKzIE9fyMuQ9Qp-CJ1KDw__ELVQlI_nb-tnx6x1UhD4J6vlkts</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Zhang, Jie</creator><creator>Wang, Tao</creator><creator>Wang, Zhenhua</creator><creator>Liu, Xiao</creator><general>The Iron and Steel Institute of Japan</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4294-9690</orcidid></search><sort><creationdate>20241115</creationdate><title>Iterative Convergence for Solving the Exit Plastic Zone and Friction Coefficient Model of Ultra-thin Strip Rolling Force</title><author>Zhang, Jie ; Wang, Tao ; Wang, Zhenhua ; Liu, Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3244-12747952c0f3e3f404eeb0462ad38c6539be2a43a3fe5d04ed73b28b5ce672743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fleck theory</topic><topic>frictional coefficient model</topic><topic>GWO-KELM neural network</topic><topic>rolling force prediction model</topic><topic>ultra-thin strip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wang, Zhenhua</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><collection>CrossRef</collection><jtitle>ISIJ International</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jie</au><au>Wang, Tao</au><au>Wang, Zhenhua</au><au>Liu, Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative Convergence for Solving the Exit Plastic Zone and Friction Coefficient Model of Ultra-thin Strip Rolling Force</atitle><jtitle>ISIJ International</jtitle><addtitle>ISIJ Int.</addtitle><date>2024-11-15</date><risdate>2024</risdate><volume>64</volume><issue>13</issue><spage>1899</spage><epage>1908</epage><pages>1899-1908</pages><artnum>ISIJINT-2024-214</artnum><issn>0915-1559</issn><eissn>1347-5460</eissn><abstract>For the analytical model of rolling force of ultra-thin strip, the iterative conditions of the exit plastic zone are improved to solve the convergence problem of the Fleck model in small reduction rolling. The nonlinear law of friction coefficient in multi-pass rolling is analyzed, and the friction coefficient database for sample data is established through the friction coefficient calculation model, which is used GWO-KELM neural network training friction coefficient prediction model, the Fleck rolling force prediction model based on the modified friction coefficient is established ultimately. A comparative analysis of prediction errors is conducted on three different specifications of strip steel using actual production data from a multifunctional 280 mm 20-high mill. The results show that the best performing MSE, RMSE, MAE, MAPE and R2, with values of 170.48, 13.06 kN, 9.01 kN, 3.30%, and 0.989, respectively. The accuracy of the modified rolling force prediction model is significantly improved, and the data scale of friction coefficient database can be continuously expanded, so the accuracy of the rolling force prediction model can be continuously improved.</abstract><pub>The Iron and Steel Institute of Japan</pub><doi>10.2355/isijinternational.ISIJINT-2024-214</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4294-9690</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0915-1559
ispartof ISIJ International, 2024/11/15, Vol.64(13), pp.1899-1908
issn 0915-1559
1347-5460
language eng
recordid cdi_crossref_primary_10_2355_isijinternational_ISIJINT_2024_214
source Full-Text Journals in Chemistry (Open access)
subjects Fleck theory
frictional coefficient model
GWO-KELM neural network
rolling force prediction model
ultra-thin strip
title Iterative Convergence for Solving the Exit Plastic Zone and Friction Coefficient Model of Ultra-thin Strip Rolling Force
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20Convergence%20for%20Solving%20the%20Exit%20Plastic%20Zone%20and%20Friction%20Coefficient%20Model%20of%20Ultra-thin%20Strip%20Rolling%20Force&rft.jtitle=ISIJ%20International&rft.au=Zhang,%20Jie&rft.date=2024-11-15&rft.volume=64&rft.issue=13&rft.spage=1899&rft.epage=1908&rft.pages=1899-1908&rft.artnum=ISIJINT-2024-214&rft.issn=0915-1559&rft.eissn=1347-5460&rft_id=info:doi/10.2355/isijinternational.ISIJINT-2024-214&rft_dat=%3Cjstage_cross%3Earticle_isijinternational_64_13_64_ISIJINT_2024_214_article_char_en%3C/jstage_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3244-12747952c0f3e3f404eeb0462ad38c6539be2a43a3fe5d04ed73b28b5ce672743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true