Loading…
Iterative Convergence for Solving the Exit Plastic Zone and Friction Coefficient Model of Ultra-thin Strip Rolling Force
For the analytical model of rolling force of ultra-thin strip, the iterative conditions of the exit plastic zone are improved to solve the convergence problem of the Fleck model in small reduction rolling. The nonlinear law of friction coefficient in multi-pass rolling is analyzed, and the friction...
Saved in:
Published in: | ISIJ International 2024/11/15, Vol.64(13), pp.1899-1908 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3244-12747952c0f3e3f404eeb0462ad38c6539be2a43a3fe5d04ed73b28b5ce672743 |
container_end_page | 1908 |
container_issue | 13 |
container_start_page | 1899 |
container_title | ISIJ International |
container_volume | 64 |
creator | Zhang, Jie Wang, Tao Wang, Zhenhua Liu, Xiao |
description | For the analytical model of rolling force of ultra-thin strip, the iterative conditions of the exit plastic zone are improved to solve the convergence problem of the Fleck model in small reduction rolling. The nonlinear law of friction coefficient in multi-pass rolling is analyzed, and the friction coefficient database for sample data is established through the friction coefficient calculation model, which is used GWO-KELM neural network training friction coefficient prediction model, the Fleck rolling force prediction model based on the modified friction coefficient is established ultimately. A comparative analysis of prediction errors is conducted on three different specifications of strip steel using actual production data from a multifunctional 280 mm 20-high mill. The results show that the best performing MSE, RMSE, MAE, MAPE and R2, with values of 170.48, 13.06 kN, 9.01 kN, 3.30%, and 0.989, respectively. The accuracy of the modified rolling force prediction model is significantly improved, and the data scale of friction coefficient database can be continuously expanded, so the accuracy of the rolling force prediction model can be continuously improved. |
doi_str_mv | 10.2355/isijinternational.ISIJINT-2024-214 |
format | article |
fullrecord | <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2355_isijinternational_ISIJINT_2024_214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_isijinternational_64_13_64_ISIJINT_2024_214_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3244-12747952c0f3e3f404eeb0462ad38c6539be2a43a3fe5d04ed73b28b5ce672743</originalsourceid><addsrcrecordid>eNpt0MtKAzEUgOEgChb1HbIWRnOdaZdarI54w-pCNyGTOWkjMZFMKPr2ZlBcqJtkkXM-wo_QISVHjEt57Ab34kKGFHR2MWh_1C7by_bmoWKEiYpRsYUmlIumkqIm22hCZlRWVMrZLjoYBteRMjYVnPIJem-LU5gN4HkMG0grCAawjQkvo9-4sMJ5Dfjs3WV85_WQncHPMQDWoceL5Mz4g7IK1jrjIGR8HXvwOFr86HPSVV67gJc5uTd8H70fwUVMBvbRjtV-gIPvew89Ls4e5hfV1e15Oz-5qgxnQlSUNaKZSWaI5cCtIAKgI6JmuudTU0s-64BpwTW3IPvy2je8Y9NOGqibssv30OmXa1IchgRWvSX3qtOHokSNOdWfnOo7pxpzqpKzIE9fyMuQ9Qp-CJ1KDw__ELVQlI_nb-tnx6x1UhD4J6vlkts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Iterative Convergence for Solving the Exit Plastic Zone and Friction Coefficient Model of Ultra-thin Strip Rolling Force</title><source>Full-Text Journals in Chemistry (Open access)</source><creator>Zhang, Jie ; Wang, Tao ; Wang, Zhenhua ; Liu, Xiao</creator><creatorcontrib>Zhang, Jie ; Wang, Tao ; Wang, Zhenhua ; Liu, Xiao</creatorcontrib><description>For the analytical model of rolling force of ultra-thin strip, the iterative conditions of the exit plastic zone are improved to solve the convergence problem of the Fleck model in small reduction rolling. The nonlinear law of friction coefficient in multi-pass rolling is analyzed, and the friction coefficient database for sample data is established through the friction coefficient calculation model, which is used GWO-KELM neural network training friction coefficient prediction model, the Fleck rolling force prediction model based on the modified friction coefficient is established ultimately. A comparative analysis of prediction errors is conducted on three different specifications of strip steel using actual production data from a multifunctional 280 mm 20-high mill. The results show that the best performing MSE, RMSE, MAE, MAPE and R2, with values of 170.48, 13.06 kN, 9.01 kN, 3.30%, and 0.989, respectively. The accuracy of the modified rolling force prediction model is significantly improved, and the data scale of friction coefficient database can be continuously expanded, so the accuracy of the rolling force prediction model can be continuously improved.</description><identifier>ISSN: 0915-1559</identifier><identifier>EISSN: 1347-5460</identifier><identifier>DOI: 10.2355/isijinternational.ISIJINT-2024-214</identifier><language>eng</language><publisher>The Iron and Steel Institute of Japan</publisher><subject>Fleck theory ; frictional coefficient model ; GWO-KELM neural network ; rolling force prediction model ; ultra-thin strip</subject><ispartof>ISIJ International, 2024/11/15, Vol.64(13), pp.1899-1908</ispartof><rights>2024 The Iron and Steel Institute of Japan.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3244-12747952c0f3e3f404eeb0462ad38c6539be2a43a3fe5d04ed73b28b5ce672743</cites><orcidid>0000-0002-4294-9690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wang, Zhenhua</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><title>Iterative Convergence for Solving the Exit Plastic Zone and Friction Coefficient Model of Ultra-thin Strip Rolling Force</title><title>ISIJ International</title><addtitle>ISIJ Int.</addtitle><description>For the analytical model of rolling force of ultra-thin strip, the iterative conditions of the exit plastic zone are improved to solve the convergence problem of the Fleck model in small reduction rolling. The nonlinear law of friction coefficient in multi-pass rolling is analyzed, and the friction coefficient database for sample data is established through the friction coefficient calculation model, which is used GWO-KELM neural network training friction coefficient prediction model, the Fleck rolling force prediction model based on the modified friction coefficient is established ultimately. A comparative analysis of prediction errors is conducted on three different specifications of strip steel using actual production data from a multifunctional 280 mm 20-high mill. The results show that the best performing MSE, RMSE, MAE, MAPE and R2, with values of 170.48, 13.06 kN, 9.01 kN, 3.30%, and 0.989, respectively. The accuracy of the modified rolling force prediction model is significantly improved, and the data scale of friction coefficient database can be continuously expanded, so the accuracy of the rolling force prediction model can be continuously improved.</description><subject>Fleck theory</subject><subject>frictional coefficient model</subject><subject>GWO-KELM neural network</subject><subject>rolling force prediction model</subject><subject>ultra-thin strip</subject><issn>0915-1559</issn><issn>1347-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpt0MtKAzEUgOEgChb1HbIWRnOdaZdarI54w-pCNyGTOWkjMZFMKPr2ZlBcqJtkkXM-wo_QISVHjEt57Ab34kKGFHR2MWh_1C7by_bmoWKEiYpRsYUmlIumkqIm22hCZlRWVMrZLjoYBteRMjYVnPIJem-LU5gN4HkMG0grCAawjQkvo9-4sMJ5Dfjs3WV85_WQncHPMQDWoceL5Mz4g7IK1jrjIGR8HXvwOFr86HPSVV67gJc5uTd8H70fwUVMBvbRjtV-gIPvew89Ls4e5hfV1e15Oz-5qgxnQlSUNaKZSWaI5cCtIAKgI6JmuudTU0s-64BpwTW3IPvy2je8Y9NOGqibssv30OmXa1IchgRWvSX3qtOHokSNOdWfnOo7pxpzqpKzIE9fyMuQ9Qp-CJ1KDw__ELVQlI_nb-tnx6x1UhD4J6vlkts</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Zhang, Jie</creator><creator>Wang, Tao</creator><creator>Wang, Zhenhua</creator><creator>Liu, Xiao</creator><general>The Iron and Steel Institute of Japan</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4294-9690</orcidid></search><sort><creationdate>20241115</creationdate><title>Iterative Convergence for Solving the Exit Plastic Zone and Friction Coefficient Model of Ultra-thin Strip Rolling Force</title><author>Zhang, Jie ; Wang, Tao ; Wang, Zhenhua ; Liu, Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3244-12747952c0f3e3f404eeb0462ad38c6539be2a43a3fe5d04ed73b28b5ce672743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fleck theory</topic><topic>frictional coefficient model</topic><topic>GWO-KELM neural network</topic><topic>rolling force prediction model</topic><topic>ultra-thin strip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wang, Zhenhua</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><collection>CrossRef</collection><jtitle>ISIJ International</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jie</au><au>Wang, Tao</au><au>Wang, Zhenhua</au><au>Liu, Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative Convergence for Solving the Exit Plastic Zone and Friction Coefficient Model of Ultra-thin Strip Rolling Force</atitle><jtitle>ISIJ International</jtitle><addtitle>ISIJ Int.</addtitle><date>2024-11-15</date><risdate>2024</risdate><volume>64</volume><issue>13</issue><spage>1899</spage><epage>1908</epage><pages>1899-1908</pages><artnum>ISIJINT-2024-214</artnum><issn>0915-1559</issn><eissn>1347-5460</eissn><abstract>For the analytical model of rolling force of ultra-thin strip, the iterative conditions of the exit plastic zone are improved to solve the convergence problem of the Fleck model in small reduction rolling. The nonlinear law of friction coefficient in multi-pass rolling is analyzed, and the friction coefficient database for sample data is established through the friction coefficient calculation model, which is used GWO-KELM neural network training friction coefficient prediction model, the Fleck rolling force prediction model based on the modified friction coefficient is established ultimately. A comparative analysis of prediction errors is conducted on three different specifications of strip steel using actual production data from a multifunctional 280 mm 20-high mill. The results show that the best performing MSE, RMSE, MAE, MAPE and R2, with values of 170.48, 13.06 kN, 9.01 kN, 3.30%, and 0.989, respectively. The accuracy of the modified rolling force prediction model is significantly improved, and the data scale of friction coefficient database can be continuously expanded, so the accuracy of the rolling force prediction model can be continuously improved.</abstract><pub>The Iron and Steel Institute of Japan</pub><doi>10.2355/isijinternational.ISIJINT-2024-214</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4294-9690</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0915-1559 |
ispartof | ISIJ International, 2024/11/15, Vol.64(13), pp.1899-1908 |
issn | 0915-1559 1347-5460 |
language | eng |
recordid | cdi_crossref_primary_10_2355_isijinternational_ISIJINT_2024_214 |
source | Full-Text Journals in Chemistry (Open access) |
subjects | Fleck theory frictional coefficient model GWO-KELM neural network rolling force prediction model ultra-thin strip |
title | Iterative Convergence for Solving the Exit Plastic Zone and Friction Coefficient Model of Ultra-thin Strip Rolling Force |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20Convergence%20for%20Solving%20the%20Exit%20Plastic%20Zone%20and%20Friction%20Coefficient%20Model%20of%20Ultra-thin%20Strip%20Rolling%20Force&rft.jtitle=ISIJ%20International&rft.au=Zhang,%20Jie&rft.date=2024-11-15&rft.volume=64&rft.issue=13&rft.spage=1899&rft.epage=1908&rft.pages=1899-1908&rft.artnum=ISIJINT-2024-214&rft.issn=0915-1559&rft.eissn=1347-5460&rft_id=info:doi/10.2355/isijinternational.ISIJINT-2024-214&rft_dat=%3Cjstage_cross%3Earticle_isijinternational_64_13_64_ISIJINT_2024_214_article_char_en%3C/jstage_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3244-12747952c0f3e3f404eeb0462ad38c6539be2a43a3fe5d04ed73b28b5ce672743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |