Loading…

High-Precision Bayesian Modeling of Samples Susceptible to Inbuilt Age

Radiocarbon dates on samples susceptible to inbuilt age are common in the chronological record of many archaeological and environmental sites. Indeed, fragments of charcoal and wood are sometimes the only materials sufficiently well preserved for dating. However, where high-precision estimates arc r...

Full description

Saved in:
Bibliographic Details
Published in:Radiocarbon 2014, Vol.56 (1), p.83-94
Main Authors: Dee, M W, Ramsey, C Bronk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Radiocarbon dates on samples susceptible to inbuilt age are common in the chronological record of many archaeological and environmental sites. Indeed, fragments of charcoal and wood are sometimes the only materials sufficiently well preserved for dating. However, where high-precision estimates arc required the extra uncertainty associated with such measurements often renders them unusable. This article tests three Bayesian modeling approaches that are designed to tackle this problem. The findings of our study suggest that successful corrections can be made for the inherent age offsets. The most effective and versatile approach was based on a version of outlier analysis. It is hoped that this method will become more widely employed and enable samples susceptible to inbuilt age to be included in high-precision chronologies.
ISSN:0033-8222
1945-5755
DOI:10.2458/56.16685