Loading…
Texture Analysis of Water-Hydrated Montmorillonite Clay by Coarse-Grained Molecular Dynamics Simulation
This study proposes a 2D coarse-grained molecular dynamics (CGMD) method for the compaction simulation of montmorillonite clay.In the CGMD method, a unit structure of a water-hydrated clay molecule is coarse-grained into a particle.Thus, the deformable molecules are modeled as a set of linearly conn...
Saved in:
Published in: | Journal of Computer Chemistry, Japan Japan, 2020, Vol.19(2), pp.46-49 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | eng ; jpn |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study proposes a 2D coarse-grained molecular dynamics (CGMD) method for the compaction simulation of montmorillonite clay.In the CGMD method, a unit structure of a water-hydrated clay molecule is coarse-grained into a particle.Thus, the deformable molecules are modeled as a set of linearly connected coarse-grained particles.As the inter-particle forces, the intra-molecular bonding and inter-molecular van der Waals forces are considered.For simplicity, the intra-molecular bonding is modeled as a linear harmonic oscillator, while the Lenard-Jones potential is used to define the van der Waals force field. With this model, the mechanical compaction of moistured montmorillonite is numerically simulated to find that 4-6 considerably deformed molecules are layered as a result of the compaction.It is also found that the simulated XRD pattern agrees with the experiment in terms of the peak angle. |
---|---|
ISSN: | 1347-1767 1347-3824 |
DOI: | 10.2477/jccj.2020-0006 |