Loading…
Pcl/Chitosan Blended Nanofibrous Tubes Made by Dual Syringe Electrospinning
3D tubular scaffolds made from Poly-(Ɛ-caprolactone) (PCL)/chitosan (CS) nanofibres are very promising candidate as vascular grafts in the field of tissue engineering. In this work, the fabrication of PCL/CS-blended nanofibrous tubes with small diameters by electrospinning from separate PCL and CS s...
Saved in:
Published in: | AUTEX Research Journal 2015-01, Vol.15 (1), p.54-59 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 3D tubular scaffolds made from Poly-(Ɛ-caprolactone) (PCL)/chitosan (CS) nanofibres are very promising candidate as vascular grafts in the field of tissue engineering. In this work, the fabrication of PCL/CS-blended nanofibrous tubes with small diameters by electrospinning from separate PCL and CS solutions is studied. The influence of different CS solutions (CS/polyethylene glycol (PEO)/glacial acetic acid (AcOH), CS/trifluoroacetic acid (TFA), CS/ AcOH) on fibre formation and producibility of nanofibrous tubes is investigated. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) is used to verify the presence of CS in the blended samples. Tensile testing and pore size measurements are done to underline the good prerequisites of the fabricated blended PCL/ CS nanofibrous tubes as potential scaffolds for vascular grafts. Tubes fabricated from the combination of PCL and CS dissolved in AcOH possesses properties, which are favourable for future cell culture studies. |
---|---|
ISSN: | 2300-0929 2300-0929 |
DOI: | 10.2478/aut-2015-0016 |