Loading…

New generalized Mellin transform and applications to partial and fractional differential equations

In this paper, we introduce a generalized Mellin transformation in a general form that encompasses the generalized Mellin transformations found in the literature. Then, we give the fundamental properties of this new integral transformation and apply it to some elementary functions. Furthermore, we o...

Full description

Saved in:
Bibliographic Details
Published in:International Journal of Mathematics and Computer in Engineering 2023-06, Vol.1 (1), p.45-66
Main Authors: Ata, Enes, Onur Kıymaz, I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1795-5730fe6f6f2ffa482deba1116715c6e4457ff88a5cb120a1644745284c2c08243
cites cdi_FETCH-LOGICAL-c1795-5730fe6f6f2ffa482deba1116715c6e4457ff88a5cb120a1644745284c2c08243
container_end_page 66
container_issue 1
container_start_page 45
container_title International Journal of Mathematics and Computer in Engineering
container_volume 1
creator Ata, Enes
Onur Kıymaz, I.
description In this paper, we introduce a generalized Mellin transformation in a general form that encompasses the generalized Mellin transformations found in the literature. Then, we give the fundamental properties of this new integral transformation and apply it to some elementary functions. Furthermore, we obtain the solutions of partial and fractional differential equations by means of this new integral transformation. Finally, we examine the relations between generalized Mellin transformations in the literature and the new generalized Mellin transformation and present a table showing the new integral transformations of functions commonly used in mathematics, physics and engineering applications.
doi_str_mv 10.2478/ijmce-2023-0004
format article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2478_ijmce_2023_0004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2478_ijmce_2023_00041145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1795-5730fe6f6f2ffa482deba1116715c6e4457ff88a5cb120a1644745284c2c08243</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEtPYmWv-QFmS5mvihCY-Jg24wLlyU2fK1LUl6TSNX0-7ceDCybZePZb9EHLL2Z2Qxs7DducwE0zkGWNMXpCJWCidGabt5Z_-msxSCiVT3EqjDZ-Q8g0PdIMNRqjDN1b0Fes6NLSP0CTfxh2FpqLQdXVw0Ie2SbRvaQexD1CfMh_BjcEwVsF7jNicMvzan4EbcuWhTjj7rVPy-fT4sXzJ1u_Pq-XDOnPcLFSmTM48aq-98B6kFRWWwDkfzlROo5TKeG8tKFdywYBrKY1UwkonHLNC5lMyP-91sU0poi-6GHYQjwVnxWipOFkqRkvFaGkg7s_EAeoeY4WbuD8OTbFt93F4KP1Hci5V_gM0rnDp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New generalized Mellin transform and applications to partial and fractional differential equations</title><source>ROAD: Directory of Open Access Scholarly Resources</source><creator>Ata, Enes ; Onur Kıymaz, I.</creator><creatorcontrib>Ata, Enes ; Onur Kıymaz, I.</creatorcontrib><description>In this paper, we introduce a generalized Mellin transformation in a general form that encompasses the generalized Mellin transformations found in the literature. Then, we give the fundamental properties of this new integral transformation and apply it to some elementary functions. Furthermore, we obtain the solutions of partial and fractional differential equations by means of this new integral transformation. Finally, we examine the relations between generalized Mellin transformations in the literature and the new generalized Mellin transformation and present a table showing the new integral transformations of functions commonly used in mathematics, physics and engineering applications.</description><identifier>ISSN: 2956-7068</identifier><identifier>EISSN: 2956-7068</identifier><identifier>DOI: 10.2478/ijmce-2023-0004</identifier><language>eng</language><publisher>Sciendo</publisher><subject>26A33 ; 34A08 ; 35A08 ; 44A05 ; fractional derivatives and integrals ; fractional differential equations ; Mellin transform ; partial differential equations</subject><ispartof>International Journal of Mathematics and Computer in Engineering, 2023-06, Vol.1 (1), p.45-66</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1795-5730fe6f6f2ffa482deba1116715c6e4457ff88a5cb120a1644745284c2c08243</citedby><cites>FETCH-LOGICAL-c1795-5730fe6f6f2ffa482deba1116715c6e4457ff88a5cb120a1644745284c2c08243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ata, Enes</creatorcontrib><creatorcontrib>Onur Kıymaz, I.</creatorcontrib><title>New generalized Mellin transform and applications to partial and fractional differential equations</title><title>International Journal of Mathematics and Computer in Engineering</title><description>In this paper, we introduce a generalized Mellin transformation in a general form that encompasses the generalized Mellin transformations found in the literature. Then, we give the fundamental properties of this new integral transformation and apply it to some elementary functions. Furthermore, we obtain the solutions of partial and fractional differential equations by means of this new integral transformation. Finally, we examine the relations between generalized Mellin transformations in the literature and the new generalized Mellin transformation and present a table showing the new integral transformations of functions commonly used in mathematics, physics and engineering applications.</description><subject>26A33</subject><subject>34A08</subject><subject>35A08</subject><subject>44A05</subject><subject>fractional derivatives and integrals</subject><subject>fractional differential equations</subject><subject>Mellin transform</subject><subject>partial differential equations</subject><issn>2956-7068</issn><issn>2956-7068</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEtPYmWv-QFmS5mvihCY-Jg24wLlyU2fK1LUl6TSNX0-7ceDCybZePZb9EHLL2Z2Qxs7DducwE0zkGWNMXpCJWCidGabt5Z_-msxSCiVT3EqjDZ-Q8g0PdIMNRqjDN1b0Fes6NLSP0CTfxh2FpqLQdXVw0Ie2SbRvaQexD1CfMh_BjcEwVsF7jNicMvzan4EbcuWhTjj7rVPy-fT4sXzJ1u_Pq-XDOnPcLFSmTM48aq-98B6kFRWWwDkfzlROo5TKeG8tKFdywYBrKY1UwkonHLNC5lMyP-91sU0poi-6GHYQjwVnxWipOFkqRkvFaGkg7s_EAeoeY4WbuD8OTbFt93F4KP1Hci5V_gM0rnDp</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Ata, Enes</creator><creator>Onur Kıymaz, I.</creator><general>Sciendo</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>New generalized Mellin transform and applications to partial and fractional differential equations</title><author>Ata, Enes ; Onur Kıymaz, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1795-5730fe6f6f2ffa482deba1116715c6e4457ff88a5cb120a1644745284c2c08243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>26A33</topic><topic>34A08</topic><topic>35A08</topic><topic>44A05</topic><topic>fractional derivatives and integrals</topic><topic>fractional differential equations</topic><topic>Mellin transform</topic><topic>partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ata, Enes</creatorcontrib><creatorcontrib>Onur Kıymaz, I.</creatorcontrib><collection>CrossRef</collection><jtitle>International Journal of Mathematics and Computer in Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ata, Enes</au><au>Onur Kıymaz, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New generalized Mellin transform and applications to partial and fractional differential equations</atitle><jtitle>International Journal of Mathematics and Computer in Engineering</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>1</volume><issue>1</issue><spage>45</spage><epage>66</epage><pages>45-66</pages><issn>2956-7068</issn><eissn>2956-7068</eissn><abstract>In this paper, we introduce a generalized Mellin transformation in a general form that encompasses the generalized Mellin transformations found in the literature. Then, we give the fundamental properties of this new integral transformation and apply it to some elementary functions. Furthermore, we obtain the solutions of partial and fractional differential equations by means of this new integral transformation. Finally, we examine the relations between generalized Mellin transformations in the literature and the new generalized Mellin transformation and present a table showing the new integral transformations of functions commonly used in mathematics, physics and engineering applications.</abstract><pub>Sciendo</pub><doi>10.2478/ijmce-2023-0004</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2956-7068
ispartof International Journal of Mathematics and Computer in Engineering, 2023-06, Vol.1 (1), p.45-66
issn 2956-7068
2956-7068
language eng
recordid cdi_crossref_primary_10_2478_ijmce_2023_0004
source ROAD: Directory of Open Access Scholarly Resources
subjects 26A33
34A08
35A08
44A05
fractional derivatives and integrals
fractional differential equations
Mellin transform
partial differential equations
title New generalized Mellin transform and applications to partial and fractional differential equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20generalized%20Mellin%20transform%20and%20applications%20to%20partial%20and%20fractional%20differential%20equations&rft.jtitle=International%20Journal%20of%20Mathematics%20and%20Computer%20in%20Engineering&rft.au=Ata,%20Enes&rft.date=2023-06-01&rft.volume=1&rft.issue=1&rft.spage=45&rft.epage=66&rft.pages=45-66&rft.issn=2956-7068&rft.eissn=2956-7068&rft_id=info:doi/10.2478/ijmce-2023-0004&rft_dat=%3Cwalterdegruyter_cross%3E10_2478_ijmce_2023_00041145%3C/walterdegruyter_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1795-5730fe6f6f2ffa482deba1116715c6e4457ff88a5cb120a1644745284c2c08243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true