Loading…
New generalized Mellin transform and applications to partial and fractional differential equations
In this paper, we introduce a generalized Mellin transformation in a general form that encompasses the generalized Mellin transformations found in the literature. Then, we give the fundamental properties of this new integral transformation and apply it to some elementary functions. Furthermore, we o...
Saved in:
Published in: | International Journal of Mathematics and Computer in Engineering 2023-06, Vol.1 (1), p.45-66 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1795-5730fe6f6f2ffa482deba1116715c6e4457ff88a5cb120a1644745284c2c08243 |
---|---|
cites | cdi_FETCH-LOGICAL-c1795-5730fe6f6f2ffa482deba1116715c6e4457ff88a5cb120a1644745284c2c08243 |
container_end_page | 66 |
container_issue | 1 |
container_start_page | 45 |
container_title | International Journal of Mathematics and Computer in Engineering |
container_volume | 1 |
creator | Ata, Enes Onur Kıymaz, I. |
description | In this paper, we introduce a generalized Mellin transformation in a general form that encompasses the generalized Mellin transformations found in the literature. Then, we give the fundamental properties of this new integral transformation and apply it to some elementary functions. Furthermore, we obtain the solutions of partial and fractional differential equations by means of this new integral transformation. Finally, we examine the relations between generalized Mellin transformations in the literature and the new generalized Mellin transformation and present a table showing the new integral transformations of functions commonly used in mathematics, physics and engineering applications. |
doi_str_mv | 10.2478/ijmce-2023-0004 |
format | article |
fullrecord | <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2478_ijmce_2023_0004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2478_ijmce_2023_00041145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1795-5730fe6f6f2ffa482deba1116715c6e4457ff88a5cb120a1644745284c2c08243</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEtPYmWv-QFmS5mvihCY-Jg24wLlyU2fK1LUl6TSNX0-7ceDCybZePZb9EHLL2Z2Qxs7DducwE0zkGWNMXpCJWCidGabt5Z_-msxSCiVT3EqjDZ-Q8g0PdIMNRqjDN1b0Fes6NLSP0CTfxh2FpqLQdXVw0Ie2SbRvaQexD1CfMh_BjcEwVsF7jNicMvzan4EbcuWhTjj7rVPy-fT4sXzJ1u_Pq-XDOnPcLFSmTM48aq-98B6kFRWWwDkfzlROo5TKeG8tKFdywYBrKY1UwkonHLNC5lMyP-91sU0poi-6GHYQjwVnxWipOFkqRkvFaGkg7s_EAeoeY4WbuD8OTbFt93F4KP1Hci5V_gM0rnDp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New generalized Mellin transform and applications to partial and fractional differential equations</title><source>ROAD: Directory of Open Access Scholarly Resources</source><creator>Ata, Enes ; Onur Kıymaz, I.</creator><creatorcontrib>Ata, Enes ; Onur Kıymaz, I.</creatorcontrib><description>In this paper, we introduce a generalized Mellin transformation in a general form that encompasses the generalized Mellin transformations found in the literature. Then, we give the fundamental properties of this new integral transformation and apply it to some elementary functions. Furthermore, we obtain the solutions of partial and fractional differential equations by means of this new integral transformation. Finally, we examine the relations between generalized Mellin transformations in the literature and the new generalized Mellin transformation and present a table showing the new integral transformations of functions commonly used in mathematics, physics and engineering applications.</description><identifier>ISSN: 2956-7068</identifier><identifier>EISSN: 2956-7068</identifier><identifier>DOI: 10.2478/ijmce-2023-0004</identifier><language>eng</language><publisher>Sciendo</publisher><subject>26A33 ; 34A08 ; 35A08 ; 44A05 ; fractional derivatives and integrals ; fractional differential equations ; Mellin transform ; partial differential equations</subject><ispartof>International Journal of Mathematics and Computer in Engineering, 2023-06, Vol.1 (1), p.45-66</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1795-5730fe6f6f2ffa482deba1116715c6e4457ff88a5cb120a1644745284c2c08243</citedby><cites>FETCH-LOGICAL-c1795-5730fe6f6f2ffa482deba1116715c6e4457ff88a5cb120a1644745284c2c08243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ata, Enes</creatorcontrib><creatorcontrib>Onur Kıymaz, I.</creatorcontrib><title>New generalized Mellin transform and applications to partial and fractional differential equations</title><title>International Journal of Mathematics and Computer in Engineering</title><description>In this paper, we introduce a generalized Mellin transformation in a general form that encompasses the generalized Mellin transformations found in the literature. Then, we give the fundamental properties of this new integral transformation and apply it to some elementary functions. Furthermore, we obtain the solutions of partial and fractional differential equations by means of this new integral transformation. Finally, we examine the relations between generalized Mellin transformations in the literature and the new generalized Mellin transformation and present a table showing the new integral transformations of functions commonly used in mathematics, physics and engineering applications.</description><subject>26A33</subject><subject>34A08</subject><subject>35A08</subject><subject>44A05</subject><subject>fractional derivatives and integrals</subject><subject>fractional differential equations</subject><subject>Mellin transform</subject><subject>partial differential equations</subject><issn>2956-7068</issn><issn>2956-7068</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEtPYmWv-QFmS5mvihCY-Jg24wLlyU2fK1LUl6TSNX0-7ceDCybZePZb9EHLL2Z2Qxs7DducwE0zkGWNMXpCJWCidGabt5Z_-msxSCiVT3EqjDZ-Q8g0PdIMNRqjDN1b0Fes6NLSP0CTfxh2FpqLQdXVw0Ie2SbRvaQexD1CfMh_BjcEwVsF7jNicMvzan4EbcuWhTjj7rVPy-fT4sXzJ1u_Pq-XDOnPcLFSmTM48aq-98B6kFRWWwDkfzlROo5TKeG8tKFdywYBrKY1UwkonHLNC5lMyP-91sU0poi-6GHYQjwVnxWipOFkqRkvFaGkg7s_EAeoeY4WbuD8OTbFt93F4KP1Hci5V_gM0rnDp</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Ata, Enes</creator><creator>Onur Kıymaz, I.</creator><general>Sciendo</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>New generalized Mellin transform and applications to partial and fractional differential equations</title><author>Ata, Enes ; Onur Kıymaz, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1795-5730fe6f6f2ffa482deba1116715c6e4457ff88a5cb120a1644745284c2c08243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>26A33</topic><topic>34A08</topic><topic>35A08</topic><topic>44A05</topic><topic>fractional derivatives and integrals</topic><topic>fractional differential equations</topic><topic>Mellin transform</topic><topic>partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ata, Enes</creatorcontrib><creatorcontrib>Onur Kıymaz, I.</creatorcontrib><collection>CrossRef</collection><jtitle>International Journal of Mathematics and Computer in Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ata, Enes</au><au>Onur Kıymaz, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New generalized Mellin transform and applications to partial and fractional differential equations</atitle><jtitle>International Journal of Mathematics and Computer in Engineering</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>1</volume><issue>1</issue><spage>45</spage><epage>66</epage><pages>45-66</pages><issn>2956-7068</issn><eissn>2956-7068</eissn><abstract>In this paper, we introduce a generalized Mellin transformation in a general form that encompasses the generalized Mellin transformations found in the literature. Then, we give the fundamental properties of this new integral transformation and apply it to some elementary functions. Furthermore, we obtain the solutions of partial and fractional differential equations by means of this new integral transformation. Finally, we examine the relations between generalized Mellin transformations in the literature and the new generalized Mellin transformation and present a table showing the new integral transformations of functions commonly used in mathematics, physics and engineering applications.</abstract><pub>Sciendo</pub><doi>10.2478/ijmce-2023-0004</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2956-7068 |
ispartof | International Journal of Mathematics and Computer in Engineering, 2023-06, Vol.1 (1), p.45-66 |
issn | 2956-7068 2956-7068 |
language | eng |
recordid | cdi_crossref_primary_10_2478_ijmce_2023_0004 |
source | ROAD: Directory of Open Access Scholarly Resources |
subjects | 26A33 34A08 35A08 44A05 fractional derivatives and integrals fractional differential equations Mellin transform partial differential equations |
title | New generalized Mellin transform and applications to partial and fractional differential equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20generalized%20Mellin%20transform%20and%20applications%20to%20partial%20and%20fractional%20differential%20equations&rft.jtitle=International%20Journal%20of%20Mathematics%20and%20Computer%20in%20Engineering&rft.au=Ata,%20Enes&rft.date=2023-06-01&rft.volume=1&rft.issue=1&rft.spage=45&rft.epage=66&rft.pages=45-66&rft.issn=2956-7068&rft.eissn=2956-7068&rft_id=info:doi/10.2478/ijmce-2023-0004&rft_dat=%3Cwalterdegruyter_cross%3E10_2478_ijmce_2023_00041145%3C/walterdegruyter_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1795-5730fe6f6f2ffa482deba1116715c6e4457ff88a5cb120a1644745284c2c08243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |