Loading…
Structural analysis and dielectric relaxation mechanism of conducting polymer/volcanic basalt rock composites
In this work, polypyrrole and polythiophene conducting polymers (CPs) have been synthesized and doped with volcanic basalt rock (VBR) in order to improve their dielectric properties for technological applications. The structure and morphology of the composites with different VBR doping concentration...
Saved in:
Published in: | Materials science--Poland 2019-09, Vol.37 (3), p.353-363 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, polypyrrole and polythiophene conducting polymers (CPs) have been synthesized and doped with volcanic basalt rock (VBR) in order to improve their dielectric properties for technological applications. The structure and morphology of the composites with different VBR doping concentrations were characterized by FT-IR and SEM analyses. The best charge storage ability was achieved for maximum VBR doping concentration (50.0 wt.%) for both CPs. Dielectric relaxation types of the composites were determined as non-Debye type due to non-zero absorption coefficient and observation of semicircles whose centers were below Z′ axis at the Nyquist plots. It was also ascertained that VBR doping makes the molecular orientation easier than for non-doped samples and reduced energy requirement of molecular orientation. In addition, AC conductivity was totally masked by DC conductivity for all samples at low frequency. |
---|---|
ISSN: | 2083-134X 2083-134X |
DOI: | 10.2478/msp-2019-0042 |