Loading…

Time-resolved imaging of fluorescent inclusions in optically turbid medium — phantom study

We present results of application of a time-resolved optical system for imaging of fluorescence excited in an inclusion containing indocyanine green (ICG), and located in optically turbid medium. The developed imaging system enabled simultaneous acquisition of fluorescence and diffusive reflectance....

Full description

Saved in:
Bibliographic Details
Published in:Opto-electronics review 2010-03, Vol.18 (1), p.37-47
Main Authors: Kacprzak, M., Liebert, A., Sawosz, P., Żołek, N., Milej, D., Maniewski, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present results of application of a time-resolved optical system for imaging of fluorescence excited in an inclusion containing indocyanine green (ICG), and located in optically turbid medium. The developed imaging system enabled simultaneous acquisition of fluorescence and diffusive reflectance. Eight independent time-resolved measurement channels based on time-correlated single photon counting technique were applied. In four of these channels, used for the fluorescence detection, sets of filters were applied in order to block the excitation light. Fast optomechanical switches allowed us to illuminate sequentially nine different spots on the surface of the studied object and finally 4×4 pixels maps at excitation and emission wavelengths were obtained. A liquid phantom used in this study consists of the fish tank filed with a solution ofmilk and water with black ink added to obtain optical properties in the range of the optical properties typical for the living tissue. A gel ball of a diameter of 5 mm with precisely controlled concentration of ICG was immersed in the liquid. The measurements were performed for inclusion located at different depths and for various ICG concentrations in the gel ball and in the surrounding liquid. The recorded distributions of times of arrival (DTA) of fluorescence photons and times of flight (DTOF) of diffusely reflected photons were analyzed by calculation of their statistical moments. We observed specific changes in moments of the measured DTAs as a function of depth of immersion of the fluorescent inclusion in the medium. We noted also that the changes of moments depend significantly on concentration of the dye in the fluorescence inclusion as well as in the surrounding liquid.
ISSN:1230-3402
1896-3757
1896-3757
DOI:10.2478/s11772-009-0027-6