Loading…

Metamodels for Interphase Heat Transfer from Mesoscale Simulations of Shock–Cylinder Interactions

Macroscale computations of shocked particle-laden flows rely on closure laws to model the heat transfer between the fluid and particle phases. Typically, closure models are semiempirical and obtained for a limited range of parameters because experiments can be difficult and expensive to perform. Thi...

Full description

Saved in:
Bibliographic Details
Published in:AIAA journal 2018-10, Vol.56 (10), p.3975-3987
Main Authors: Das, Pratik, Sen, Oishik, Jacobs, Gustaaf, Udaykumar, H. S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a328t-aae87d1a1ac246980aa569807d20439a931e40280085bbf92c7734c0e9d74ac43
cites cdi_FETCH-LOGICAL-a328t-aae87d1a1ac246980aa569807d20439a931e40280085bbf92c7734c0e9d74ac43
container_end_page 3987
container_issue 10
container_start_page 3975
container_title AIAA journal
container_volume 56
creator Das, Pratik
Sen, Oishik
Jacobs, Gustaaf
Udaykumar, H. S
description Macroscale computations of shocked particle-laden flows rely on closure laws to model the heat transfer between the fluid and particle phases. Typically, closure models are semiempirical and obtained for a limited range of parameters because experiments can be difficult and expensive to perform. This paper describes an approach to obtain closures for heat and momentum exchanges from ensembles of high-fidelity mesoscale computations of shock–cylinder interactions. The simulations are performed for flow over a single cylinder for a wide range of Reynolds ReD and Mach numbers Ms. The results are used to construct a metamodel for the drag coefficient CD and the Nusselt number Nu correlation using a modified Bayesian kriging method. To study the effects of the particle volume fraction ϕ, mesoscale computations are performed for cylinder clusters and the Nu and CD are calculated. The metamodel shows that, although the Nusselt number Nu is primarily a function of the ReD, the Ms and ϕ also significantly affect the interphase heat transfer. In particular, the Nusselt number Nu first decreases until Ms∼1.5−1.8 and increases for values of Ms>1.8. The results show that compressibility and viscous effects must be taken into account to provide accurate closure laws for interphase heat transfer in shocked particle-laden flows.
doi_str_mv 10.2514/1.J056982
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_J056982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167417774</sourcerecordid><originalsourceid>FETCH-LOGICAL-a328t-aae87d1a1ac246980aa569807d20439a931e40280085bbf92c7734c0e9d74ac43</originalsourceid><addsrcrecordid>eNplkM1Kw0AUhQdRsFYXvsGAILhInb90kqUUtZWKi1ZwN9xO7tDUJFNn0kV3voNv6JOY2oILV5cLH9_hHEIuORuIlKtbPnhi6TDPxBHp8VTKRGbp2zHpMcZ4wlUqTslZjKvuEzrjPWKfsYXaF1hF6nygk6bFsF5CRDpGaOk8QBMdBuqCr-kzRh8tVEhnZb2poC19E6l3dLb09v3782u0rcqmwIMH7C9wTk4cVBEvDrdPXh_u56NxMn15nIzupglIkbUJAGa64MDBCtVVYAC7JkwXgimZQy45KiYyxrJ0sXC5sFpLZRnmhVZgleyTq713HfzHBmNrVn4Tmi7SCD7Uimutd9TNnrLBxxjQmXUoawhbw5nZbWi4OWzYsdd7FkqAP9t_8AdZQ3Bl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167417774</pqid></control><display><type>article</type><title>Metamodels for Interphase Heat Transfer from Mesoscale Simulations of Shock–Cylinder Interactions</title><source>Alma/SFX Local Collection</source><creator>Das, Pratik ; Sen, Oishik ; Jacobs, Gustaaf ; Udaykumar, H. S</creator><creatorcontrib>Das, Pratik ; Sen, Oishik ; Jacobs, Gustaaf ; Udaykumar, H. S</creatorcontrib><description>Macroscale computations of shocked particle-laden flows rely on closure laws to model the heat transfer between the fluid and particle phases. Typically, closure models are semiempirical and obtained for a limited range of parameters because experiments can be difficult and expensive to perform. This paper describes an approach to obtain closures for heat and momentum exchanges from ensembles of high-fidelity mesoscale computations of shock–cylinder interactions. The simulations are performed for flow over a single cylinder for a wide range of Reynolds ReD and Mach numbers Ms. The results are used to construct a metamodel for the drag coefficient CD and the Nusselt number Nu correlation using a modified Bayesian kriging method. To study the effects of the particle volume fraction ϕ, mesoscale computations are performed for cylinder clusters and the Nu and CD are calculated. The metamodel shows that, although the Nusselt number Nu is primarily a function of the ReD, the Ms and ϕ also significantly affect the interphase heat transfer. In particular, the Nusselt number Nu first decreases until Ms∼1.5−1.8 and increases for values of Ms&gt;1.8. The results show that compressibility and viscous effects must be taken into account to provide accurate closure laws for interphase heat transfer in shocked particle-laden flows.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J056982</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Bayesian analysis ; Closures ; Compressibility ; Computational fluid dynamics ; Computer simulation ; Cylinders ; Drag coefficients ; Fluid flow ; Heat exchange ; Heat transfer ; Kriging interpolation ; Mesoscale phenomena ; Metamodels ; Nusselt number ; Viscosity</subject><ispartof>AIAA journal, 2018-10, Vol.56 (10), p.3975-3987</ispartof><rights>Copyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0001-1452 (print) or 1533-385X (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a328t-aae87d1a1ac246980aa569807d20439a931e40280085bbf92c7734c0e9d74ac43</citedby><cites>FETCH-LOGICAL-a328t-aae87d1a1ac246980aa569807d20439a931e40280085bbf92c7734c0e9d74ac43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Das, Pratik</creatorcontrib><creatorcontrib>Sen, Oishik</creatorcontrib><creatorcontrib>Jacobs, Gustaaf</creatorcontrib><creatorcontrib>Udaykumar, H. S</creatorcontrib><title>Metamodels for Interphase Heat Transfer from Mesoscale Simulations of Shock–Cylinder Interactions</title><title>AIAA journal</title><description>Macroscale computations of shocked particle-laden flows rely on closure laws to model the heat transfer between the fluid and particle phases. Typically, closure models are semiempirical and obtained for a limited range of parameters because experiments can be difficult and expensive to perform. This paper describes an approach to obtain closures for heat and momentum exchanges from ensembles of high-fidelity mesoscale computations of shock–cylinder interactions. The simulations are performed for flow over a single cylinder for a wide range of Reynolds ReD and Mach numbers Ms. The results are used to construct a metamodel for the drag coefficient CD and the Nusselt number Nu correlation using a modified Bayesian kriging method. To study the effects of the particle volume fraction ϕ, mesoscale computations are performed for cylinder clusters and the Nu and CD are calculated. The metamodel shows that, although the Nusselt number Nu is primarily a function of the ReD, the Ms and ϕ also significantly affect the interphase heat transfer. In particular, the Nusselt number Nu first decreases until Ms∼1.5−1.8 and increases for values of Ms&gt;1.8. The results show that compressibility and viscous effects must be taken into account to provide accurate closure laws for interphase heat transfer in shocked particle-laden flows.</description><subject>Bayesian analysis</subject><subject>Closures</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Cylinders</subject><subject>Drag coefficients</subject><subject>Fluid flow</subject><subject>Heat exchange</subject><subject>Heat transfer</subject><subject>Kriging interpolation</subject><subject>Mesoscale phenomena</subject><subject>Metamodels</subject><subject>Nusselt number</subject><subject>Viscosity</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNplkM1Kw0AUhQdRsFYXvsGAILhInb90kqUUtZWKi1ZwN9xO7tDUJFNn0kV3voNv6JOY2oILV5cLH9_hHEIuORuIlKtbPnhi6TDPxBHp8VTKRGbp2zHpMcZ4wlUqTslZjKvuEzrjPWKfsYXaF1hF6nygk6bFsF5CRDpGaOk8QBMdBuqCr-kzRh8tVEhnZb2poC19E6l3dLb09v3782u0rcqmwIMH7C9wTk4cVBEvDrdPXh_u56NxMn15nIzupglIkbUJAGa64MDBCtVVYAC7JkwXgimZQy45KiYyxrJ0sXC5sFpLZRnmhVZgleyTq713HfzHBmNrVn4Tmi7SCD7Uimutd9TNnrLBxxjQmXUoawhbw5nZbWi4OWzYsdd7FkqAP9t_8AdZQ3Bl</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Das, Pratik</creator><creator>Sen, Oishik</creator><creator>Jacobs, Gustaaf</creator><creator>Udaykumar, H. S</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20181001</creationdate><title>Metamodels for Interphase Heat Transfer from Mesoscale Simulations of Shock–Cylinder Interactions</title><author>Das, Pratik ; Sen, Oishik ; Jacobs, Gustaaf ; Udaykumar, H. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a328t-aae87d1a1ac246980aa569807d20439a931e40280085bbf92c7734c0e9d74ac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian analysis</topic><topic>Closures</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Cylinders</topic><topic>Drag coefficients</topic><topic>Fluid flow</topic><topic>Heat exchange</topic><topic>Heat transfer</topic><topic>Kriging interpolation</topic><topic>Mesoscale phenomena</topic><topic>Metamodels</topic><topic>Nusselt number</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Pratik</creatorcontrib><creatorcontrib>Sen, Oishik</creatorcontrib><creatorcontrib>Jacobs, Gustaaf</creatorcontrib><creatorcontrib>Udaykumar, H. S</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Pratik</au><au>Sen, Oishik</au><au>Jacobs, Gustaaf</au><au>Udaykumar, H. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metamodels for Interphase Heat Transfer from Mesoscale Simulations of Shock–Cylinder Interactions</atitle><jtitle>AIAA journal</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>56</volume><issue>10</issue><spage>3975</spage><epage>3987</epage><pages>3975-3987</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>Macroscale computations of shocked particle-laden flows rely on closure laws to model the heat transfer between the fluid and particle phases. Typically, closure models are semiempirical and obtained for a limited range of parameters because experiments can be difficult and expensive to perform. This paper describes an approach to obtain closures for heat and momentum exchanges from ensembles of high-fidelity mesoscale computations of shock–cylinder interactions. The simulations are performed for flow over a single cylinder for a wide range of Reynolds ReD and Mach numbers Ms. The results are used to construct a metamodel for the drag coefficient CD and the Nusselt number Nu correlation using a modified Bayesian kriging method. To study the effects of the particle volume fraction ϕ, mesoscale computations are performed for cylinder clusters and the Nu and CD are calculated. The metamodel shows that, although the Nusselt number Nu is primarily a function of the ReD, the Ms and ϕ also significantly affect the interphase heat transfer. In particular, the Nusselt number Nu first decreases until Ms∼1.5−1.8 and increases for values of Ms&gt;1.8. The results show that compressibility and viscous effects must be taken into account to provide accurate closure laws for interphase heat transfer in shocked particle-laden flows.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J056982</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2018-10, Vol.56 (10), p.3975-3987
issn 0001-1452
1533-385X
language eng
recordid cdi_crossref_primary_10_2514_1_J056982
source Alma/SFX Local Collection
subjects Bayesian analysis
Closures
Compressibility
Computational fluid dynamics
Computer simulation
Cylinders
Drag coefficients
Fluid flow
Heat exchange
Heat transfer
Kriging interpolation
Mesoscale phenomena
Metamodels
Nusselt number
Viscosity
title Metamodels for Interphase Heat Transfer from Mesoscale Simulations of Shock–Cylinder Interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metamodels%20for%20Interphase%20Heat%20Transfer%20from%20Mesoscale%20Simulations%20of%20Shock%E2%80%93Cylinder%20Interactions&rft.jtitle=AIAA%20journal&rft.au=Das,%20Pratik&rft.date=2018-10-01&rft.volume=56&rft.issue=10&rft.spage=3975&rft.epage=3987&rft.pages=3975-3987&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J056982&rft_dat=%3Cproquest_cross%3E2167417774%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a328t-aae87d1a1ac246980aa569807d20439a931e40280085bbf92c7734c0e9d74ac43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2167417774&rft_id=info:pmid/&rfr_iscdi=true