Loading…
Metamodels for Interphase Heat Transfer from Mesoscale Simulations of Shock–Cylinder Interactions
Macroscale computations of shocked particle-laden flows rely on closure laws to model the heat transfer between the fluid and particle phases. Typically, closure models are semiempirical and obtained for a limited range of parameters because experiments can be difficult and expensive to perform. Thi...
Saved in:
Published in: | AIAA journal 2018-10, Vol.56 (10), p.3975-3987 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a328t-aae87d1a1ac246980aa569807d20439a931e40280085bbf92c7734c0e9d74ac43 |
---|---|
cites | cdi_FETCH-LOGICAL-a328t-aae87d1a1ac246980aa569807d20439a931e40280085bbf92c7734c0e9d74ac43 |
container_end_page | 3987 |
container_issue | 10 |
container_start_page | 3975 |
container_title | AIAA journal |
container_volume | 56 |
creator | Das, Pratik Sen, Oishik Jacobs, Gustaaf Udaykumar, H. S |
description | Macroscale computations of shocked particle-laden flows rely on closure laws to model the heat transfer between the fluid and particle phases. Typically, closure models are semiempirical and obtained for a limited range of parameters because experiments can be difficult and expensive to perform. This paper describes an approach to obtain closures for heat and momentum exchanges from ensembles of high-fidelity mesoscale computations of shock–cylinder interactions. The simulations are performed for flow over a single cylinder for a wide range of Reynolds ReD and Mach numbers Ms. The results are used to construct a metamodel for the drag coefficient CD and the Nusselt number Nu correlation using a modified Bayesian kriging method. To study the effects of the particle volume fraction ϕ, mesoscale computations are performed for cylinder clusters and the Nu and CD are calculated. The metamodel shows that, although the Nusselt number Nu is primarily a function of the ReD, the Ms and ϕ also significantly affect the interphase heat transfer. In particular, the Nusselt number Nu first decreases until Ms∼1.5−1.8 and increases for values of Ms>1.8. The results show that compressibility and viscous effects must be taken into account to provide accurate closure laws for interphase heat transfer in shocked particle-laden flows. |
doi_str_mv | 10.2514/1.J056982 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_J056982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167417774</sourcerecordid><originalsourceid>FETCH-LOGICAL-a328t-aae87d1a1ac246980aa569807d20439a931e40280085bbf92c7734c0e9d74ac43</originalsourceid><addsrcrecordid>eNplkM1Kw0AUhQdRsFYXvsGAILhInb90kqUUtZWKi1ZwN9xO7tDUJFNn0kV3voNv6JOY2oILV5cLH9_hHEIuORuIlKtbPnhi6TDPxBHp8VTKRGbp2zHpMcZ4wlUqTslZjKvuEzrjPWKfsYXaF1hF6nygk6bFsF5CRDpGaOk8QBMdBuqCr-kzRh8tVEhnZb2poC19E6l3dLb09v3782u0rcqmwIMH7C9wTk4cVBEvDrdPXh_u56NxMn15nIzupglIkbUJAGa64MDBCtVVYAC7JkwXgimZQy45KiYyxrJ0sXC5sFpLZRnmhVZgleyTq713HfzHBmNrVn4Tmi7SCD7Uimutd9TNnrLBxxjQmXUoawhbw5nZbWi4OWzYsdd7FkqAP9t_8AdZQ3Bl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167417774</pqid></control><display><type>article</type><title>Metamodels for Interphase Heat Transfer from Mesoscale Simulations of Shock–Cylinder Interactions</title><source>Alma/SFX Local Collection</source><creator>Das, Pratik ; Sen, Oishik ; Jacobs, Gustaaf ; Udaykumar, H. S</creator><creatorcontrib>Das, Pratik ; Sen, Oishik ; Jacobs, Gustaaf ; Udaykumar, H. S</creatorcontrib><description>Macroscale computations of shocked particle-laden flows rely on closure laws to model the heat transfer between the fluid and particle phases. Typically, closure models are semiempirical and obtained for a limited range of parameters because experiments can be difficult and expensive to perform. This paper describes an approach to obtain closures for heat and momentum exchanges from ensembles of high-fidelity mesoscale computations of shock–cylinder interactions. The simulations are performed for flow over a single cylinder for a wide range of Reynolds ReD and Mach numbers Ms. The results are used to construct a metamodel for the drag coefficient CD and the Nusselt number Nu correlation using a modified Bayesian kriging method. To study the effects of the particle volume fraction ϕ, mesoscale computations are performed for cylinder clusters and the Nu and CD are calculated. The metamodel shows that, although the Nusselt number Nu is primarily a function of the ReD, the Ms and ϕ also significantly affect the interphase heat transfer. In particular, the Nusselt number Nu first decreases until Ms∼1.5−1.8 and increases for values of Ms>1.8. The results show that compressibility and viscous effects must be taken into account to provide accurate closure laws for interphase heat transfer in shocked particle-laden flows.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J056982</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Bayesian analysis ; Closures ; Compressibility ; Computational fluid dynamics ; Computer simulation ; Cylinders ; Drag coefficients ; Fluid flow ; Heat exchange ; Heat transfer ; Kriging interpolation ; Mesoscale phenomena ; Metamodels ; Nusselt number ; Viscosity</subject><ispartof>AIAA journal, 2018-10, Vol.56 (10), p.3975-3987</ispartof><rights>Copyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0001-1452 (print) or 1533-385X (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a328t-aae87d1a1ac246980aa569807d20439a931e40280085bbf92c7734c0e9d74ac43</citedby><cites>FETCH-LOGICAL-a328t-aae87d1a1ac246980aa569807d20439a931e40280085bbf92c7734c0e9d74ac43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Das, Pratik</creatorcontrib><creatorcontrib>Sen, Oishik</creatorcontrib><creatorcontrib>Jacobs, Gustaaf</creatorcontrib><creatorcontrib>Udaykumar, H. S</creatorcontrib><title>Metamodels for Interphase Heat Transfer from Mesoscale Simulations of Shock–Cylinder Interactions</title><title>AIAA journal</title><description>Macroscale computations of shocked particle-laden flows rely on closure laws to model the heat transfer between the fluid and particle phases. Typically, closure models are semiempirical and obtained for a limited range of parameters because experiments can be difficult and expensive to perform. This paper describes an approach to obtain closures for heat and momentum exchanges from ensembles of high-fidelity mesoscale computations of shock–cylinder interactions. The simulations are performed for flow over a single cylinder for a wide range of Reynolds ReD and Mach numbers Ms. The results are used to construct a metamodel for the drag coefficient CD and the Nusselt number Nu correlation using a modified Bayesian kriging method. To study the effects of the particle volume fraction ϕ, mesoscale computations are performed for cylinder clusters and the Nu and CD are calculated. The metamodel shows that, although the Nusselt number Nu is primarily a function of the ReD, the Ms and ϕ also significantly affect the interphase heat transfer. In particular, the Nusselt number Nu first decreases until Ms∼1.5−1.8 and increases for values of Ms>1.8. The results show that compressibility and viscous effects must be taken into account to provide accurate closure laws for interphase heat transfer in shocked particle-laden flows.</description><subject>Bayesian analysis</subject><subject>Closures</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Cylinders</subject><subject>Drag coefficients</subject><subject>Fluid flow</subject><subject>Heat exchange</subject><subject>Heat transfer</subject><subject>Kriging interpolation</subject><subject>Mesoscale phenomena</subject><subject>Metamodels</subject><subject>Nusselt number</subject><subject>Viscosity</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNplkM1Kw0AUhQdRsFYXvsGAILhInb90kqUUtZWKi1ZwN9xO7tDUJFNn0kV3voNv6JOY2oILV5cLH9_hHEIuORuIlKtbPnhi6TDPxBHp8VTKRGbp2zHpMcZ4wlUqTslZjKvuEzrjPWKfsYXaF1hF6nygk6bFsF5CRDpGaOk8QBMdBuqCr-kzRh8tVEhnZb2poC19E6l3dLb09v3782u0rcqmwIMH7C9wTk4cVBEvDrdPXh_u56NxMn15nIzupglIkbUJAGa64MDBCtVVYAC7JkwXgimZQy45KiYyxrJ0sXC5sFpLZRnmhVZgleyTq713HfzHBmNrVn4Tmi7SCD7Uimutd9TNnrLBxxjQmXUoawhbw5nZbWi4OWzYsdd7FkqAP9t_8AdZQ3Bl</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Das, Pratik</creator><creator>Sen, Oishik</creator><creator>Jacobs, Gustaaf</creator><creator>Udaykumar, H. S</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20181001</creationdate><title>Metamodels for Interphase Heat Transfer from Mesoscale Simulations of Shock–Cylinder Interactions</title><author>Das, Pratik ; Sen, Oishik ; Jacobs, Gustaaf ; Udaykumar, H. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a328t-aae87d1a1ac246980aa569807d20439a931e40280085bbf92c7734c0e9d74ac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian analysis</topic><topic>Closures</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Cylinders</topic><topic>Drag coefficients</topic><topic>Fluid flow</topic><topic>Heat exchange</topic><topic>Heat transfer</topic><topic>Kriging interpolation</topic><topic>Mesoscale phenomena</topic><topic>Metamodels</topic><topic>Nusselt number</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Pratik</creatorcontrib><creatorcontrib>Sen, Oishik</creatorcontrib><creatorcontrib>Jacobs, Gustaaf</creatorcontrib><creatorcontrib>Udaykumar, H. S</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Pratik</au><au>Sen, Oishik</au><au>Jacobs, Gustaaf</au><au>Udaykumar, H. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metamodels for Interphase Heat Transfer from Mesoscale Simulations of Shock–Cylinder Interactions</atitle><jtitle>AIAA journal</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>56</volume><issue>10</issue><spage>3975</spage><epage>3987</epage><pages>3975-3987</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>Macroscale computations of shocked particle-laden flows rely on closure laws to model the heat transfer between the fluid and particle phases. Typically, closure models are semiempirical and obtained for a limited range of parameters because experiments can be difficult and expensive to perform. This paper describes an approach to obtain closures for heat and momentum exchanges from ensembles of high-fidelity mesoscale computations of shock–cylinder interactions. The simulations are performed for flow over a single cylinder for a wide range of Reynolds ReD and Mach numbers Ms. The results are used to construct a metamodel for the drag coefficient CD and the Nusselt number Nu correlation using a modified Bayesian kriging method. To study the effects of the particle volume fraction ϕ, mesoscale computations are performed for cylinder clusters and the Nu and CD are calculated. The metamodel shows that, although the Nusselt number Nu is primarily a function of the ReD, the Ms and ϕ also significantly affect the interphase heat transfer. In particular, the Nusselt number Nu first decreases until Ms∼1.5−1.8 and increases for values of Ms>1.8. The results show that compressibility and viscous effects must be taken into account to provide accurate closure laws for interphase heat transfer in shocked particle-laden flows.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J056982</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2018-10, Vol.56 (10), p.3975-3987 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_crossref_primary_10_2514_1_J056982 |
source | Alma/SFX Local Collection |
subjects | Bayesian analysis Closures Compressibility Computational fluid dynamics Computer simulation Cylinders Drag coefficients Fluid flow Heat exchange Heat transfer Kriging interpolation Mesoscale phenomena Metamodels Nusselt number Viscosity |
title | Metamodels for Interphase Heat Transfer from Mesoscale Simulations of Shock–Cylinder Interactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metamodels%20for%20Interphase%20Heat%20Transfer%20from%20Mesoscale%20Simulations%20of%20Shock%E2%80%93Cylinder%20Interactions&rft.jtitle=AIAA%20journal&rft.au=Das,%20Pratik&rft.date=2018-10-01&rft.volume=56&rft.issue=10&rft.spage=3975&rft.epage=3987&rft.pages=3975-3987&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J056982&rft_dat=%3Cproquest_cross%3E2167417774%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a328t-aae87d1a1ac246980aa569807d20439a931e40280085bbf92c7734c0e9d74ac43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2167417774&rft_id=info:pmid/&rfr_iscdi=true |