Loading…

Influence of Transonic Flutter on the Conceptual Design of Next-Generation Transport Aircraft

Transonic aeroelasticity is an important consideration in the conceptual design of next-generation aircraft configurations. This paper develops a low-order physics-based flutter model for swept high-aspect-ratio wings. The approach builds upon a previously developed flutter model that uses the flowf...

Full description

Saved in:
Bibliographic Details
Published in:AIAA journal 2019-05, Vol.57 (5), p.1973-1987
Main Authors: Opgenoord, Max M. J, Drela, Mark, Willcox, Karen E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transonic aeroelasticity is an important consideration in the conceptual design of next-generation aircraft configurations. This paper develops a low-order physics-based flutter model for swept high-aspect-ratio wings. The approach builds upon a previously developed flutter model that uses the flowfield’s lowest moments of vorticity and volume-source density perturbations as its states. The contribution of this paper is a new formulation of the model for swept high-aspect-ratio wings. The aerodynamic model is calibrated using offline two-dimensional unsteady transonic computational-fluid-dynamics simulations. Combining that aerodynamic model with a beam model results in a low-dimensional overall aeroelastic system. The low computational cost of the model permits its incorporation in a conceptual design tool for next-generation transport aircraft. The model’s capabilities are demonstrated by finding transonic flutter boundaries for different clamped-wing configurations and investigating the influence of transonic flutter on the planform design of next-generation transport aircraft.
ISSN:0001-1452
1533-385X
DOI:10.2514/1.J057302