Loading…
Numerical Investigation on Combustion-Enhancement Strategy in Shock–Fuel Jet Interaction
Multidimensional numerical simulations are performed to investigate the evolution and formation of unburned fuels for a shock–fuel jet interaction scenario. A full set of Navier–Stokes equations with detailed chemical mechanisms are solved, and the results are analyzed through the Lagrangian method...
Saved in:
Published in: | AIAA journal 2022-01, Vol.60 (1), p.393-410 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a288t-b720fbdcea2600e276bc8314d48780c51c98d1c11a80af8e87f8e64a8fa4d22f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a288t-b720fbdcea2600e276bc8314d48780c51c98d1c11a80af8e87f8e64a8fa4d22f3 |
container_end_page | 410 |
container_issue | 1 |
container_start_page | 393 |
container_title | AIAA journal |
container_volume | 60 |
creator | Zhang, Bin Liu, Haoyang Yu, Bin Wang, Zi’ang He, Miaosheng Liu, Hong |
description | Multidimensional numerical simulations are performed to investigate the evolution and formation of unburned fuels for a shock–fuel jet interaction scenario. A full set of Navier–Stokes equations with detailed chemical mechanisms are solved, and the results are analyzed through the Lagrangian method with the goal of improving combustion efficiency in supersonic flows. The flame morphology of a two-dimensional (2-D) non-premixed reactive shock–bubble interaction is first simulated and studied, in which unburned hydrogen is found to prevent efficient combustion. By applying the Lagrangian particle tracking method, most of the unburned hydrogen wrapped into the primary vortex turns out to be initially located upon the symmetry line of the bubble. Motivated by the idea of breaking the primary vortex, this study designs a novel geometry of a concentric bubble, which improves combustion efficiency to 94.4% in contrast to a solid fuel bubble (74%) due to multivortex interaction and a thick bridge structure. With the consistency between qualitative and quantitative 2-D and three-dimensional (3-D) flow dynamics, the idea of a 2-D concentric-bubble configuration is effectively extended to a 3-D coaxial jet interacting with oblique shock despite the existence of Kelvin–Helmholtz instability. |
doi_str_mv | 10.2514/1.J060168 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_J060168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615758243</sourcerecordid><originalsourceid>FETCH-LOGICAL-a288t-b720fbdcea2600e276bc8314d48780c51c98d1c11a80af8e87f8e64a8fa4d22f3</originalsourceid><addsrcrecordid>eNplkMFKAzEQhoMoWKsH32BBEDxszWST3XiUYrWl6KEK4mWZzWbbrd1sTbJCb76Db-iTmNKCB2GY4Ydv_mF-Qs6BDpgAfg2DCU0ppPKA9EAkSZxI8XpIepRSiIELdkxOnFsGxTIJPfL22DXa1gpX0dh8aufrOfq6NVGoYdsUnduq-M4s0CjdaOOjmbfo9XwT1SaaLVr1_vP1Per0KppoH0y8tqi2S6fkqMKV02f72Scvo7vn4UM8fbofD2-nMTIpfVxkjFZFqTSylFLNsrRQMgFecplJqgSoG1mCAkBJsZJaZqGlHGWFvGSsSvrkYue7tu1HF17Il21nTTiZsxREJiTjSaCudpSyrXNWV_na1g3aTQ4030aXQ76PLrCXOxZrxD-3_-AvSTVt0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615758243</pqid></control><display><type>article</type><title>Numerical Investigation on Combustion-Enhancement Strategy in Shock–Fuel Jet Interaction</title><source>Alma/SFX Local Collection</source><creator>Zhang, Bin ; Liu, Haoyang ; Yu, Bin ; Wang, Zi’ang ; He, Miaosheng ; Liu, Hong</creator><creatorcontrib>Zhang, Bin ; Liu, Haoyang ; Yu, Bin ; Wang, Zi’ang ; He, Miaosheng ; Liu, Hong</creatorcontrib><description>Multidimensional numerical simulations are performed to investigate the evolution and formation of unburned fuels for a shock–fuel jet interaction scenario. A full set of Navier–Stokes equations with detailed chemical mechanisms are solved, and the results are analyzed through the Lagrangian method with the goal of improving combustion efficiency in supersonic flows. The flame morphology of a two-dimensional (2-D) non-premixed reactive shock–bubble interaction is first simulated and studied, in which unburned hydrogen is found to prevent efficient combustion. By applying the Lagrangian particle tracking method, most of the unburned hydrogen wrapped into the primary vortex turns out to be initially located upon the symmetry line of the bubble. Motivated by the idea of breaking the primary vortex, this study designs a novel geometry of a concentric bubble, which improves combustion efficiency to 94.4% in contrast to a solid fuel bubble (74%) due to multivortex interaction and a thick bridge structure. With the consistency between qualitative and quantitative 2-D and three-dimensional (3-D) flow dynamics, the idea of a 2-D concentric-bubble configuration is effectively extended to a 3-D coaxial jet interacting with oblique shock despite the existence of Kelvin–Helmholtz instability.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J060168</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Aeronautics ; Bridges ; Combustion efficiency ; Efficiency ; Gases ; Investigations ; Jet interaction ; Kelvin-Helmholtz instability ; Numerical analysis ; Particle tracking ; Solid fuels ; Students ; Supersonic flow ; Three dimensional flow ; Two dimensional flow ; Viscosity ; Vortices</subject><ispartof>AIAA journal, 2022-01, Vol.60 (1), p.393-410</ispartof><rights>Copyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a288t-b720fbdcea2600e276bc8314d48780c51c98d1c11a80af8e87f8e64a8fa4d22f3</citedby><cites>FETCH-LOGICAL-a288t-b720fbdcea2600e276bc8314d48780c51c98d1c11a80af8e87f8e64a8fa4d22f3</cites><orcidid>0000-0002-5103-9955 ; 0000-0003-3002-7063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Liu, Haoyang</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Wang, Zi’ang</creatorcontrib><creatorcontrib>He, Miaosheng</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><title>Numerical Investigation on Combustion-Enhancement Strategy in Shock–Fuel Jet Interaction</title><title>AIAA journal</title><description>Multidimensional numerical simulations are performed to investigate the evolution and formation of unburned fuels for a shock–fuel jet interaction scenario. A full set of Navier–Stokes equations with detailed chemical mechanisms are solved, and the results are analyzed through the Lagrangian method with the goal of improving combustion efficiency in supersonic flows. The flame morphology of a two-dimensional (2-D) non-premixed reactive shock–bubble interaction is first simulated and studied, in which unburned hydrogen is found to prevent efficient combustion. By applying the Lagrangian particle tracking method, most of the unburned hydrogen wrapped into the primary vortex turns out to be initially located upon the symmetry line of the bubble. Motivated by the idea of breaking the primary vortex, this study designs a novel geometry of a concentric bubble, which improves combustion efficiency to 94.4% in contrast to a solid fuel bubble (74%) due to multivortex interaction and a thick bridge structure. With the consistency between qualitative and quantitative 2-D and three-dimensional (3-D) flow dynamics, the idea of a 2-D concentric-bubble configuration is effectively extended to a 3-D coaxial jet interacting with oblique shock despite the existence of Kelvin–Helmholtz instability.</description><subject>Aeronautics</subject><subject>Bridges</subject><subject>Combustion efficiency</subject><subject>Efficiency</subject><subject>Gases</subject><subject>Investigations</subject><subject>Jet interaction</subject><subject>Kelvin-Helmholtz instability</subject><subject>Numerical analysis</subject><subject>Particle tracking</subject><subject>Solid fuels</subject><subject>Students</subject><subject>Supersonic flow</subject><subject>Three dimensional flow</subject><subject>Two dimensional flow</subject><subject>Viscosity</subject><subject>Vortices</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplkMFKAzEQhoMoWKsH32BBEDxszWST3XiUYrWl6KEK4mWZzWbbrd1sTbJCb76Db-iTmNKCB2GY4Ydv_mF-Qs6BDpgAfg2DCU0ppPKA9EAkSZxI8XpIepRSiIELdkxOnFsGxTIJPfL22DXa1gpX0dh8aufrOfq6NVGoYdsUnduq-M4s0CjdaOOjmbfo9XwT1SaaLVr1_vP1Per0KppoH0y8tqi2S6fkqMKV02f72Scvo7vn4UM8fbofD2-nMTIpfVxkjFZFqTSylFLNsrRQMgFecplJqgSoG1mCAkBJsZJaZqGlHGWFvGSsSvrkYue7tu1HF17Il21nTTiZsxREJiTjSaCudpSyrXNWV_na1g3aTQ4030aXQ76PLrCXOxZrxD-3_-AvSTVt0w</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Zhang, Bin</creator><creator>Liu, Haoyang</creator><creator>Yu, Bin</creator><creator>Wang, Zi’ang</creator><creator>He, Miaosheng</creator><creator>Liu, Hong</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5103-9955</orcidid><orcidid>https://orcid.org/0000-0003-3002-7063</orcidid></search><sort><creationdate>20220101</creationdate><title>Numerical Investigation on Combustion-Enhancement Strategy in Shock–Fuel Jet Interaction</title><author>Zhang, Bin ; Liu, Haoyang ; Yu, Bin ; Wang, Zi’ang ; He, Miaosheng ; Liu, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a288t-b720fbdcea2600e276bc8314d48780c51c98d1c11a80af8e87f8e64a8fa4d22f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aeronautics</topic><topic>Bridges</topic><topic>Combustion efficiency</topic><topic>Efficiency</topic><topic>Gases</topic><topic>Investigations</topic><topic>Jet interaction</topic><topic>Kelvin-Helmholtz instability</topic><topic>Numerical analysis</topic><topic>Particle tracking</topic><topic>Solid fuels</topic><topic>Students</topic><topic>Supersonic flow</topic><topic>Three dimensional flow</topic><topic>Two dimensional flow</topic><topic>Viscosity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Liu, Haoyang</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Wang, Zi’ang</creatorcontrib><creatorcontrib>He, Miaosheng</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bin</au><au>Liu, Haoyang</au><au>Yu, Bin</au><au>Wang, Zi’ang</au><au>He, Miaosheng</au><au>Liu, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Investigation on Combustion-Enhancement Strategy in Shock–Fuel Jet Interaction</atitle><jtitle>AIAA journal</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>60</volume><issue>1</issue><spage>393</spage><epage>410</epage><pages>393-410</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>Multidimensional numerical simulations are performed to investigate the evolution and formation of unburned fuels for a shock–fuel jet interaction scenario. A full set of Navier–Stokes equations with detailed chemical mechanisms are solved, and the results are analyzed through the Lagrangian method with the goal of improving combustion efficiency in supersonic flows. The flame morphology of a two-dimensional (2-D) non-premixed reactive shock–bubble interaction is first simulated and studied, in which unburned hydrogen is found to prevent efficient combustion. By applying the Lagrangian particle tracking method, most of the unburned hydrogen wrapped into the primary vortex turns out to be initially located upon the symmetry line of the bubble. Motivated by the idea of breaking the primary vortex, this study designs a novel geometry of a concentric bubble, which improves combustion efficiency to 94.4% in contrast to a solid fuel bubble (74%) due to multivortex interaction and a thick bridge structure. With the consistency between qualitative and quantitative 2-D and three-dimensional (3-D) flow dynamics, the idea of a 2-D concentric-bubble configuration is effectively extended to a 3-D coaxial jet interacting with oblique shock despite the existence of Kelvin–Helmholtz instability.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J060168</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5103-9955</orcidid><orcidid>https://orcid.org/0000-0003-3002-7063</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2022-01, Vol.60 (1), p.393-410 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_crossref_primary_10_2514_1_J060168 |
source | Alma/SFX Local Collection |
subjects | Aeronautics Bridges Combustion efficiency Efficiency Gases Investigations Jet interaction Kelvin-Helmholtz instability Numerical analysis Particle tracking Solid fuels Students Supersonic flow Three dimensional flow Two dimensional flow Viscosity Vortices |
title | Numerical Investigation on Combustion-Enhancement Strategy in Shock–Fuel Jet Interaction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Investigation%20on%20Combustion-Enhancement%20Strategy%20in%20Shock%E2%80%93Fuel%20Jet%20Interaction&rft.jtitle=AIAA%20journal&rft.au=Zhang,%20Bin&rft.date=2022-01-01&rft.volume=60&rft.issue=1&rft.spage=393&rft.epage=410&rft.pages=393-410&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J060168&rft_dat=%3Cproquest_cross%3E2615758243%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a288t-b720fbdcea2600e276bc8314d48780c51c98d1c11a80af8e87f8e64a8fa4d22f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2615758243&rft_id=info:pmid/&rfr_iscdi=true |