Loading…

Numerical Investigation on Combustion-Enhancement Strategy in Shock–Fuel Jet Interaction

Multidimensional numerical simulations are performed to investigate the evolution and formation of unburned fuels for a shock–fuel jet interaction scenario. A full set of Navier–Stokes equations with detailed chemical mechanisms are solved, and the results are analyzed through the Lagrangian method...

Full description

Saved in:
Bibliographic Details
Published in:AIAA journal 2022-01, Vol.60 (1), p.393-410
Main Authors: Zhang, Bin, Liu, Haoyang, Yu, Bin, Wang, Zi’ang, He, Miaosheng, Liu, Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a288t-b720fbdcea2600e276bc8314d48780c51c98d1c11a80af8e87f8e64a8fa4d22f3
cites cdi_FETCH-LOGICAL-a288t-b720fbdcea2600e276bc8314d48780c51c98d1c11a80af8e87f8e64a8fa4d22f3
container_end_page 410
container_issue 1
container_start_page 393
container_title AIAA journal
container_volume 60
creator Zhang, Bin
Liu, Haoyang
Yu, Bin
Wang, Zi’ang
He, Miaosheng
Liu, Hong
description Multidimensional numerical simulations are performed to investigate the evolution and formation of unburned fuels for a shock–fuel jet interaction scenario. A full set of Navier–Stokes equations with detailed chemical mechanisms are solved, and the results are analyzed through the Lagrangian method with the goal of improving combustion efficiency in supersonic flows. The flame morphology of a two-dimensional (2-D) non-premixed reactive shock–bubble interaction is first simulated and studied, in which unburned hydrogen is found to prevent efficient combustion. By applying the Lagrangian particle tracking method, most of the unburned hydrogen wrapped into the primary vortex turns out to be initially located upon the symmetry line of the bubble. Motivated by the idea of breaking the primary vortex, this study designs a novel geometry of a concentric bubble, which improves combustion efficiency to 94.4% in contrast to a solid fuel bubble (74%) due to multivortex interaction and a thick bridge structure. With the consistency between qualitative and quantitative 2-D and three-dimensional (3-D) flow dynamics, the idea of a 2-D concentric-bubble configuration is effectively extended to a 3-D coaxial jet interacting with oblique shock despite the existence of Kelvin–Helmholtz instability.
doi_str_mv 10.2514/1.J060168
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_J060168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615758243</sourcerecordid><originalsourceid>FETCH-LOGICAL-a288t-b720fbdcea2600e276bc8314d48780c51c98d1c11a80af8e87f8e64a8fa4d22f3</originalsourceid><addsrcrecordid>eNplkMFKAzEQhoMoWKsH32BBEDxszWST3XiUYrWl6KEK4mWZzWbbrd1sTbJCb76Db-iTmNKCB2GY4Ydv_mF-Qs6BDpgAfg2DCU0ppPKA9EAkSZxI8XpIepRSiIELdkxOnFsGxTIJPfL22DXa1gpX0dh8aufrOfq6NVGoYdsUnduq-M4s0CjdaOOjmbfo9XwT1SaaLVr1_vP1Per0KppoH0y8tqi2S6fkqMKV02f72Scvo7vn4UM8fbofD2-nMTIpfVxkjFZFqTSylFLNsrRQMgFecplJqgSoG1mCAkBJsZJaZqGlHGWFvGSsSvrkYue7tu1HF17Il21nTTiZsxREJiTjSaCudpSyrXNWV_na1g3aTQ4030aXQ76PLrCXOxZrxD-3_-AvSTVt0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615758243</pqid></control><display><type>article</type><title>Numerical Investigation on Combustion-Enhancement Strategy in Shock–Fuel Jet Interaction</title><source>Alma/SFX Local Collection</source><creator>Zhang, Bin ; Liu, Haoyang ; Yu, Bin ; Wang, Zi’ang ; He, Miaosheng ; Liu, Hong</creator><creatorcontrib>Zhang, Bin ; Liu, Haoyang ; Yu, Bin ; Wang, Zi’ang ; He, Miaosheng ; Liu, Hong</creatorcontrib><description>Multidimensional numerical simulations are performed to investigate the evolution and formation of unburned fuels for a shock–fuel jet interaction scenario. A full set of Navier–Stokes equations with detailed chemical mechanisms are solved, and the results are analyzed through the Lagrangian method with the goal of improving combustion efficiency in supersonic flows. The flame morphology of a two-dimensional (2-D) non-premixed reactive shock–bubble interaction is first simulated and studied, in which unburned hydrogen is found to prevent efficient combustion. By applying the Lagrangian particle tracking method, most of the unburned hydrogen wrapped into the primary vortex turns out to be initially located upon the symmetry line of the bubble. Motivated by the idea of breaking the primary vortex, this study designs a novel geometry of a concentric bubble, which improves combustion efficiency to 94.4% in contrast to a solid fuel bubble (74%) due to multivortex interaction and a thick bridge structure. With the consistency between qualitative and quantitative 2-D and three-dimensional (3-D) flow dynamics, the idea of a 2-D concentric-bubble configuration is effectively extended to a 3-D coaxial jet interacting with oblique shock despite the existence of Kelvin–Helmholtz instability.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J060168</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Aeronautics ; Bridges ; Combustion efficiency ; Efficiency ; Gases ; Investigations ; Jet interaction ; Kelvin-Helmholtz instability ; Numerical analysis ; Particle tracking ; Solid fuels ; Students ; Supersonic flow ; Three dimensional flow ; Two dimensional flow ; Viscosity ; Vortices</subject><ispartof>AIAA journal, 2022-01, Vol.60 (1), p.393-410</ispartof><rights>Copyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a288t-b720fbdcea2600e276bc8314d48780c51c98d1c11a80af8e87f8e64a8fa4d22f3</citedby><cites>FETCH-LOGICAL-a288t-b720fbdcea2600e276bc8314d48780c51c98d1c11a80af8e87f8e64a8fa4d22f3</cites><orcidid>0000-0002-5103-9955 ; 0000-0003-3002-7063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Liu, Haoyang</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Wang, Zi’ang</creatorcontrib><creatorcontrib>He, Miaosheng</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><title>Numerical Investigation on Combustion-Enhancement Strategy in Shock–Fuel Jet Interaction</title><title>AIAA journal</title><description>Multidimensional numerical simulations are performed to investigate the evolution and formation of unburned fuels for a shock–fuel jet interaction scenario. A full set of Navier–Stokes equations with detailed chemical mechanisms are solved, and the results are analyzed through the Lagrangian method with the goal of improving combustion efficiency in supersonic flows. The flame morphology of a two-dimensional (2-D) non-premixed reactive shock–bubble interaction is first simulated and studied, in which unburned hydrogen is found to prevent efficient combustion. By applying the Lagrangian particle tracking method, most of the unburned hydrogen wrapped into the primary vortex turns out to be initially located upon the symmetry line of the bubble. Motivated by the idea of breaking the primary vortex, this study designs a novel geometry of a concentric bubble, which improves combustion efficiency to 94.4% in contrast to a solid fuel bubble (74%) due to multivortex interaction and a thick bridge structure. With the consistency between qualitative and quantitative 2-D and three-dimensional (3-D) flow dynamics, the idea of a 2-D concentric-bubble configuration is effectively extended to a 3-D coaxial jet interacting with oblique shock despite the existence of Kelvin–Helmholtz instability.</description><subject>Aeronautics</subject><subject>Bridges</subject><subject>Combustion efficiency</subject><subject>Efficiency</subject><subject>Gases</subject><subject>Investigations</subject><subject>Jet interaction</subject><subject>Kelvin-Helmholtz instability</subject><subject>Numerical analysis</subject><subject>Particle tracking</subject><subject>Solid fuels</subject><subject>Students</subject><subject>Supersonic flow</subject><subject>Three dimensional flow</subject><subject>Two dimensional flow</subject><subject>Viscosity</subject><subject>Vortices</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplkMFKAzEQhoMoWKsH32BBEDxszWST3XiUYrWl6KEK4mWZzWbbrd1sTbJCb76Db-iTmNKCB2GY4Ydv_mF-Qs6BDpgAfg2DCU0ppPKA9EAkSZxI8XpIepRSiIELdkxOnFsGxTIJPfL22DXa1gpX0dh8aufrOfq6NVGoYdsUnduq-M4s0CjdaOOjmbfo9XwT1SaaLVr1_vP1Per0KppoH0y8tqi2S6fkqMKV02f72Scvo7vn4UM8fbofD2-nMTIpfVxkjFZFqTSylFLNsrRQMgFecplJqgSoG1mCAkBJsZJaZqGlHGWFvGSsSvrkYue7tu1HF17Il21nTTiZsxREJiTjSaCudpSyrXNWV_na1g3aTQ4030aXQ76PLrCXOxZrxD-3_-AvSTVt0w</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Zhang, Bin</creator><creator>Liu, Haoyang</creator><creator>Yu, Bin</creator><creator>Wang, Zi’ang</creator><creator>He, Miaosheng</creator><creator>Liu, Hong</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5103-9955</orcidid><orcidid>https://orcid.org/0000-0003-3002-7063</orcidid></search><sort><creationdate>20220101</creationdate><title>Numerical Investigation on Combustion-Enhancement Strategy in Shock–Fuel Jet Interaction</title><author>Zhang, Bin ; Liu, Haoyang ; Yu, Bin ; Wang, Zi’ang ; He, Miaosheng ; Liu, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a288t-b720fbdcea2600e276bc8314d48780c51c98d1c11a80af8e87f8e64a8fa4d22f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aeronautics</topic><topic>Bridges</topic><topic>Combustion efficiency</topic><topic>Efficiency</topic><topic>Gases</topic><topic>Investigations</topic><topic>Jet interaction</topic><topic>Kelvin-Helmholtz instability</topic><topic>Numerical analysis</topic><topic>Particle tracking</topic><topic>Solid fuels</topic><topic>Students</topic><topic>Supersonic flow</topic><topic>Three dimensional flow</topic><topic>Two dimensional flow</topic><topic>Viscosity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Liu, Haoyang</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Wang, Zi’ang</creatorcontrib><creatorcontrib>He, Miaosheng</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bin</au><au>Liu, Haoyang</au><au>Yu, Bin</au><au>Wang, Zi’ang</au><au>He, Miaosheng</au><au>Liu, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Investigation on Combustion-Enhancement Strategy in Shock–Fuel Jet Interaction</atitle><jtitle>AIAA journal</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>60</volume><issue>1</issue><spage>393</spage><epage>410</epage><pages>393-410</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>Multidimensional numerical simulations are performed to investigate the evolution and formation of unburned fuels for a shock–fuel jet interaction scenario. A full set of Navier–Stokes equations with detailed chemical mechanisms are solved, and the results are analyzed through the Lagrangian method with the goal of improving combustion efficiency in supersonic flows. The flame morphology of a two-dimensional (2-D) non-premixed reactive shock–bubble interaction is first simulated and studied, in which unburned hydrogen is found to prevent efficient combustion. By applying the Lagrangian particle tracking method, most of the unburned hydrogen wrapped into the primary vortex turns out to be initially located upon the symmetry line of the bubble. Motivated by the idea of breaking the primary vortex, this study designs a novel geometry of a concentric bubble, which improves combustion efficiency to 94.4% in contrast to a solid fuel bubble (74%) due to multivortex interaction and a thick bridge structure. With the consistency between qualitative and quantitative 2-D and three-dimensional (3-D) flow dynamics, the idea of a 2-D concentric-bubble configuration is effectively extended to a 3-D coaxial jet interacting with oblique shock despite the existence of Kelvin–Helmholtz instability.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J060168</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5103-9955</orcidid><orcidid>https://orcid.org/0000-0003-3002-7063</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2022-01, Vol.60 (1), p.393-410
issn 0001-1452
1533-385X
language eng
recordid cdi_crossref_primary_10_2514_1_J060168
source Alma/SFX Local Collection
subjects Aeronautics
Bridges
Combustion efficiency
Efficiency
Gases
Investigations
Jet interaction
Kelvin-Helmholtz instability
Numerical analysis
Particle tracking
Solid fuels
Students
Supersonic flow
Three dimensional flow
Two dimensional flow
Viscosity
Vortices
title Numerical Investigation on Combustion-Enhancement Strategy in Shock–Fuel Jet Interaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Investigation%20on%20Combustion-Enhancement%20Strategy%20in%20Shock%E2%80%93Fuel%20Jet%20Interaction&rft.jtitle=AIAA%20journal&rft.au=Zhang,%20Bin&rft.date=2022-01-01&rft.volume=60&rft.issue=1&rft.spage=393&rft.epage=410&rft.pages=393-410&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J060168&rft_dat=%3Cproquest_cross%3E2615758243%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a288t-b720fbdcea2600e276bc8314d48780c51c98d1c11a80af8e87f8e64a8fa4d22f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2615758243&rft_id=info:pmid/&rfr_iscdi=true